IM-Zero: Instance-level Motion Controllable Video Generation
in a Zero-shot Manner

Supplementary Material

1. Implementation Details

1.1. Instance Motion Control Implementation

Motion Generation Stage. For keyframe candidates gen-
eration, we employ InstanceDiffusion [21] as the grounded
text-to-image model. For coarse motion video generation,
we utilize AnimateDiff [2] as the text-to-video model. In
this process, we incorporate Stable Diffusion v1.5 [19] for
spatial layers and animatediff-motion-adapter v1-5-3 [2]
for motion layers. Additionally, we integrate SparseC-
trl [3] as the ControlNet, which leverages the canny im-
age of keyframe candidates to produce videos. The ratio-
nale behind using SparseCtrl [3] lies in the possibility of
the keyframe candidates’ quantity being less than the num-
ber of frames in the video. Furthermore, in the modifi-
cation of AnimateDiff [2] through cross-frame attention,
we specifically substitute self-attention layers within the
mid_block.attentions.0.transformer_blocks.0.attn1 block of
UNet with cross-frame attention layers.

Video Refinement Stage. In this stage, we utilize Animate-
Diff [2] as the text-to-video model for motion injection,
where we also incorporate Stable Diffusion v1.5 [19] for
spatial layers and animatediff-motion-adapter v1-5-3 [2] for
motion layers. Besides, we utilize Stable Diffusion v1.5 [2]
as the text-to-image model for detail injection.

Injection Timestep Strategy. Moreover, we discovered
that implementing motion injection and detail injection only
at specific timesteps is enough, which remarkably reduces
the inference time. We have found that motion injection can
be confined to the initial half of the denoising process, while
detail injection can be focused on the latter half. Specifi-
cally, we introduce a threshold #iyeshola to delineate the de-
noising phase. For ¢ ~ [twreshold; ---, 1], We sample several
timesteps for motion injection, and for ¢ ~ [1, ..., tihreshold]>
we sample several timesteps for detail injection. This can
be explained by the properties of the denoising process
of diffusion models. According to [25], diffusion models
tend to reconstruct low-frequency components at the ini-
tial timesteps and reconstruct high-frequency components
later. For T2V models, low-frequency components often
correspond to the spatio-temporal correlation within videos,
closely linked to motion [23]. Hence, we conduct motion
injection in the early stages. On the other hand, as high-
frequency components correspond to the finer details within
frames, we perform detail injection in the later stages.

1.2. Versatile Capacity Implementation

In addition to overall instance motion control, IM-Zero of-
fers versatile capacity advantages over comparative meth-
ods. First, IM-Zero can control the subparts of instances.
Users can first determine the spatial location of the instance
and then separately specify the spatial location and corre-
sponding movement trajectory of the subparts. This allows
the grounded text-to-image model to generate the instance
and its subparts at the specified locations. IM-Zero then
generates a coarse motion video and refines it through the
Video Refinement Stage.

Second, IM-Zero allows users to specify instance shapes
more precisely using masks. We use InstanceDiffusion [21]
as the grounded text-to-image model. InstanceDiffusion
processes the mask input similarly to bounding boxes by
sampling it into a sequence of points and encoding it into in-
stance tokens, ensuring that the generated instance’s shape
conforms to the mask input.

Third, IM-Zero allows users to perform motion transfer
to customize more complex motion patterns using reference
videos. As is introduced in Section 3.5, we first extract con-
trol signals (e.g., depth maps) from the source video. The
control signals and the target prompt are then input into a
text-to-video model with ControlNet to generate a coarse
video, which aligns with both the source motion pattern and
the target prompt. Finally, the coarse motion video is re-
fined through the Video Refinement Stage. Additionally,
we can also add ControlNet to the Video Refinement Stage
for better motion transfer effects, and in this case, we draw
control signals from the coarse motion video.

Moreover, IM-Zero allows high-quality text-to-video
generation with text inputs only. Similarly, we employ only
a text-to-video model to generate a coarse video according
to the text input. Then the coarse video is refined via the
Video Refinement Stage to enhance video quality.

2. Experimental Settings

2.1. Dataset Curation

For quantitative evaluation, real-shot videos are needed as
ground truth, from which instance spatial locations and
movement trajectories are extracted to simulate user in-
puts. Therefore we utilize the training set and validation
set of the DAVIS-17 dataset [16] and the test set of the
GOT10k dataset [5]. We performed a series of prepro-
cessing steps on the videos. First, we uniformly sam-
pled 16 frames from each video. Then, we cropped a



frame_height xframe_height region from the center of each
frame and resized it to 512x512. Finally, we filtered out
videos that no longer contained instances.

After sampling and cropping the videos, we use BLIP-
2 [L1] to generate text prompts and GroundingDINO [13]
to extract bounding boxes from the first and last frames,
generating the inputs required by IM-Zero and the compar-
ative methods. Then, we eliminate videos where Ground-
ingDINO [13] failed to detect bounding boxes. Finally,
we randomly select 50 videos and 70 videos from the rest
videos of DAVIS-17 [16] and GOT10k [5]. The extracted
inputs are then used to generate videos with a resolution set
at 512x512, a frame number of 16.

2.2, Metric Selection and Implementation

For the evaluation metrics, we employ mean Intersection
over Union (mloU) and Centroid Distance (CD) to assess
the match between the generated videos and the spatial con-
trol conditions specified by the user inputs. We use Fréchet
Video Distance (FVD) [20] and Kernel Inception Distance
(KID) [1] to evaluate video quality, and CLIP similarities
(CLIPSim) [18] to assess frame-to-frame consistency.

Specifically, mIoU and CD calculations utilize the OWL-
ViT-large open-vocabulary instance detector [15], following
the methodologies of Peekaboo [7] and TrailBlazer [14].
For videos where instances are undetectable, mloU is set to
0, and CD selects the farthest point within the video frame
for computation as a penalty. The calculation of FVD is
based on FID [4] following [20], and the implementation of
FID follows StyleGAN [8]. The calculation of KID follows
the implementation by TorchMetrics. And the implemen-
tation of CLIPSim employs the pre-trained clip-vit-large-
patch14 version of the CLIP model [18].

For the parameters, we set \; = 0.8 in Equation 2
and Ao = 0.8 in Equation 5. We employ 40 denoising
timesteps and set M = 4 in Equation 2 and D = 4 in
Equation 5. For the injection timestep strategy, we set
tihreshold = 20. We perform motion injection 5 times at
timesteps [22, 26, 30, 34, 38 and detail injection 10 times at
timesteps [6,7,8,9,11,13,15,17,19].

3. Ablation Studies

3.1. Ablation on Motion Generation Stage

In the Motion Generation Stage, we apply a series of
methods to enhance consistency in generating coarse mo-
tion videos. To validate the effectiveness, we conduct
an ablation study on the DAVIS-17 dataset. We remove
cross-frame attention from Keyframe Candidates Genera-
tion, eliminate cross-frame attention from Coarse Motion
Video Generation, replace the designed initial noise with
random noise, and omit the IP-Adapter, respectively. The
parameters for each experiment are set entirely consistent.

The results, as depicted in Table Al, indicate that these
methods effectively improve the quality of the final gener-
ated videos and also enhance the alignment with user inputs.

3.2. Ablation on Injection Method

We also conduct an ablation study on Motion Injection and
Detail Injection. As shown in Figure A1, the coarse motion
video exhibits issues such as low consistency and poor im-
age quality (e.g., watermark). Solely utilizing motion injec-
tion can enhance consistency but lacks detail. Detail injec-
tion alone increases detail but introduces consistency prob-
lems like distortion. Our complete method enhances both
consistency and detail, demonstrating the effectiveness.

3.3. Ablation on Injection Timestep Strategy

In our method, we employ an Injection Timestep Strategy
as follows. We use a total of 40 denoising timesteps, per-
forming motion injection at 5 timesteps and detail injection
at 10 timesteps. To verify the effectiveness, we conduct
ablation studies on this Injection Timestep Strategy using
the DAVIS-17 dataset. Specifically, we conduct three addi-
tional sets of experiments. First, we try higher frequency
injection which performs injection for all timesteps. We
perform motion injection at every denoising timestep ¢ for
t ~ [20,21,...,40], and perform detail injection at every
denoising timestep ¢ for t ~ [6,7, ..., 20]. Second, we tried
lower frequency injection, performing motion injection 3
times at timesteps [21, 28, 35] and performing detail injec-
tion 5 times at timesteps [6, 9, 12,15, 18]. Finally, we tried
only 1 timestep injection, performing motion injection at
the last timestep [40] and performing detail injection at the
first possible timestep [6] (as t — 1 — D should be at least 1,
where we set D = 4). The result is as shown in Table A2.

For the first set of experiments, we performed injection
at all timesteps. We observed an improvement in frame con-
sistency on CLIPSim, which verifies the effectiveness of
motion injection in enhancing motion smoothness and con-
sistency. However, excessive motion injection led to blurry
frames with a lack of detail, which could not be compen-
sated by detail injection. Consequently, the video quality
decreased in terms of FVD and KID, and this may also lead
to incorrect detection of instances, resulting in a decrease in
accuracy as measured by mloU and CD. Additionally, ex-
cessive injection increased inference time. Therefore, it is
necessary to control the frequency of injection.

For the second set of experiments, we slightly reduced
the injection frequency, performing motion injection 3
times and detail injection 5 times. This resulted in out-
comes very close to our method. The second set of experi-
ments outperformed our method in mloU and matched our
method in CD, but was inferior in terms of video quality
as measured by FVD and KID. For the third set of exper-
iments, we performed only one motion injection and one



Table Al. Ablation on different components in Motion Generation Stage.

Method FVD (}) KID (}) CLIPSim (1)  mloU (1) CD (})
w/o 1st CFA 4320.07 26.84 98.84 0.26 0.29
w/o 2nd CFA 4528.09 28.08 98.78 0.21 0.31
w/o init noise 4786.17 26.69 98.82 0.26 0.31

w/o IP-Adapter  4549.94 27.75 98.87 0.26 0.28
Ours 4070.01 25.75 98.91 0.27 0.26

Figure Al. Ablation on different components in Zero-shot Video Refinement. (a) Coarse motion video exhibits low consistency and poor
image quality like watermark. (b) Refinement w/o detail injection exhibits low detail richness. (c) Refinement w/o motion injection exhibits
consistency problems like distortion. (d) Our complete refinement enhances both consistency and detail.

detail injection, leading to a decline in almost all metrics.
Considering the actual visual observations by humans, we
ultimately chose the current strategy of 5 motion injections
and 10 detail injections.

4. Supplementary Evaluations and Discussion

We provide more comparison results and discussions in this
section. As we present qualitative results in the video ver-
sion, please open the pdf with Adobe Acrobat Reader.

4.1. Instance Control Compared With T2V-Zero,
Peekaboo, TrailBlazer and MotionBooth.

We present the video version qualitative results of Figure
4 in Figure A2. The results further demonstrate that our
method is better in alignment with the input, motion effects,
and video quality compared with other methods.

4.2. Instance Control Compared With FreeTraj

We further compare our method with FreeTraj [17]. For
each instance, FreeTraj [17] requires inputting boxes with
a fixed size across frames to make noise flow; otherwise,
it fails to generate the corresponding video. This addi-
tional constraint introduces two issues. Firstly, it restricts
the practical applicability of FreeTraj [17]. In contrast, nei-
ther T2V-Zero [9], Peekaboo [7], TrailBlazer [14], Motion-
Booth [22], nor our method is subject to this limitation.
Secondly, this constraint precludes a direct comparison be-
tween FreeTraj and other methods under the experimental

settings described in Table 1, as the bounding boxes ex-
tracted by GroundingDINO [13] generally exhibit varying
sizes across frames. Therefore, to ensure a fair compari-
son, we conduct an extra evaluation of FreeTraj [17] and
our method under new experiment settings that satisfy the
aforementioned constraint.

Experiment Settings. We generated 50 sets of input trajec-
tories with unchanged box sizes using GPT. For each set of
input trajectories, the corresponding text prompts were also
generated by GPT. In terms of metrics, due to the absence
of ground truth videos, we evaluate CLIPSim for temporal
consistency across frames, and mIoU and CD for alignment
with the input.

Quantitative results. The quantitative results are shown in
Table A3. Our method significantly outperforms FreeTraj
in all metrics, demonstrating superior temporal consistency
across frames and better alignment with the trajectory input.
Qualitative results. The qualitative results are shown in
Figure A3. The input can be found in the supplementary
video. The results demonstrate that our method surpasses
FreeTraj [17] in terms of alignment with the input, motion
effects, and video quality.

4.3. Results on Motion Transfer

To validate the effectiveness of our method in motion trans-
fer task, we compare with MOFT [10], MotionClone [12],
and MotionDirector [26].

Experiment Settings. For the evaluation dataset, we use



Table A2. Ablation on Injection Timestep Strategy.

Method FVD (}) KID ({) CLIPSim (1) mloU (1) CD ()
injection for all timesteps 4213.42 30.84 98.99 0.20 0.33
lower frequency injection 4214.44 26.23 98.73 0.28 0.26
only 1 timestep injection 4079.40 26.84 98.13 0.27 0.27

Ours 4070.01 25.75 98.91 0.27 0.26

(a) T2V-Zero

(b) Peekabo

(e) ours

Figure A2. Instance control qualitative results compared with T2V-Zero [9], Peekaboo [7], TrailBlazer [14] and MotionBooth [22].

Table A3. Quantitative results compared with FreeTraj [17].

Quantitative results. The quantitative results are shown in
Table A4. The results demonstrate that our method is com-

Method CD(}) mloU (1) CLIPSim (1)) petitive in Motion Fidelity [24] and is the best in Imaging
FreeTraj  0.21 0.21 97.21 Quality [6].
Ours 0.13 0.39 99.64

Table A4. Motion transfer results compared with other methods.

Qualitative results. The qualitative results are shown in
Figure A4. The results also demonstrate that our method
exhibits competitive motion transfer performance compared
with other methods.

Method Motion Fidelity (1) Imaging Quality (1)
MotionClone [12] 74.5 0.72 . .
MOFT [10] 512 071 4.4. Results on Text-to-video Generation
MotionDirector [20] 75.5 0.68 As we use UNet-based models, we also compare T2V gen-
Ours 63.7 0.73

Table AS. T2V results compared with UNet baseline.

eration with UNet baseline AnimateDiff [2].

Experiment Settings. We randomly generate 50 prompts
randomly generated by GPT and use these prompts as the
only inputs to generate videos via our method and Animate-

Method Imaging Quality (1) CLIPSim (1) . > :
AnimateDiff [2] 0.67 99.05 Diff. For metrics, as there are no ground truth videos, we
Ours 0.74 99.73 use Imaging Quality [6] and CLIPSim to evaluate the video

the open-sourced data from MotionClone [12]. For met-
rics, we use Motion Fidelity [24] and Imaging Quality [6]
following MOFT [10]. The implementation of Motion Fi-
delity follows that of [24], and the implementation of Imag-
ing Quality follows that of [6].

quality and consistency across frames.

Quantitative results. The quantitative results are shown
in Table A5. The results demonstrate that our method per-
forms better on both Imaging Quality and CLIPSim, indi-
cating better video quality and consistency across frames.
Qualitative results. The qualitative results are shown in
Figure A5. The results also demonstrate our method per-
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Figure A3. Qualitative results compared with FreeTraj [17].

(a) source

(b) MotionClone

(¢) MOFT
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Figure A4. Motion transfer qualitative results compared with MOFT [10], MotionClone [12], and MotionDirector [26].

forms better in T2V generation compared with the baseline.

4.5. Autoregreesive Consistency Improvement Re-
sults

The decomposition design of our pipeline allows autore-
gressive usage of the second stage to autoregressively en-
hance temporal consistency. For instance, we first generate
the skateboard demo in the supplementary video and then
input the generated video to the second stage to get a fur-
ther refined video, as is shown in the last demo in Figure A6.
As shown in Figure A6, the refined video has improved
shoe consistency. To further validate the effectiveness of
our method, we also provide comparison results with other
zero-shot methods.

4.6. Results on Multi-instance Control

Our method also has multi-instance control capacity, as is
shown in Fiugre A7. In comparative methods, only Trail-
Blazer [14] supports multi-instance control, we also present
the video generated by TrailBlazer [14] as a comparison.
The results demonstrate that our method has better multi-
instance control capacity compared with TrailBlazer [14].

5. Additional Examples of Generated Videos

More videos are available in the MP4 file in the supplemen-
tary multimedia.
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