IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
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Figure 1. The re-initialization process of IncEventGS.

1. More Details about Re-initialization

The re-initialization process is illustrated in Fig. 1. After the
first-time initialization, we can render a brightness image from
3D-GS at pose T, where T'; represents the camera pose at
the end of the first event chunk. To improve the 3D structure of
3D-GS, we use a monocular depth estimation network [2] to
predict a dense depth map from the rendered brightness image.
This depth map is then used to re-initialize the centers of the
3D Gaussians by unprojecting the pixel depths at camera
pose T, as illustrated in Fig. 1. After re-centering the 3D
Gaussians, we perform the initialization process again to
achieve both accurate 3D structure and exceptional brightness
image rendering performance.

2. Comparison with Gaussian-based Event
Methods

To further evaluate our method, we conducted additional
comparisons against state-of-the-art Gaussian-based event ap-
proaches. Since Event3DGS [7] had not been open-sourced,
we chose to compare against E2GS[1] and EvGGS[6]. In
particular, we removed the supervision of blurred image in
E2GS and exploited the pretrained weight of EvGGS for
comparisons. As shown in Table 2, our method still outper-
forms those two baselines event though they used ground truth
poses. Since EvGGS is a generalizable method based on a
feed-forward network, it has limited generalization capability
on unseen dataset.

3. Experiments in Fast-Motion Scenarios

Fast camera movement can induce motion blur, making
it challenging to reconstruct the scene and estimate camera
poses using RGB-based algorithms. We compare our event-
based method with two state-of-the-art pose-free Gaussian
SLAM implementations: MonoGS [4] (RGB modality) and

Method ‘ Synthetic (768 x 480) ‘ Real-world (1280 x 720)
| Training | Storage | Training |  Storage
ENeRF 12 hour 253M 12 hour 253M
EventNeRF 21 hour 14M 24 hour 14M
Robust e-NeRF | 11 hour 745M 13 hour 745M
Ours 0.5 hour 65M 2 hour 55M

Table 1. Average model efficiency comparison.

SplaTAM [3] (RGBD modality). By leveraging the high
temporal resolution of event cameras, our method experiences
minimal performance degradation, even under fast motion.
Additionally, it is more effective at preserving high-frequency
information in the scene. As shown in Fig. 2, our approach
delivers superior novel view synthesis results, particularly
during rapid camera movement.

4. Experiments on Color Event Datasets

Our method can also be applied to color event datasets by
integrating the Bayer filter [5], as shown below:

ACevent = HF@EAX)—F@EAX)HQ (1)
Lssim = SSIM(F © E;(x),F @ E;(x)) 2)

Furthermore, our method can be extended to incorporate train-
ing with ground-truth poses.

We conducted experiments on the EventNeRF dataset
[5], which focuses on object reconstruction. Due to the
dataset’s limited features, pose estimation is challenging; nei-
ther COLMAP nor DEVO can estimate camera poses on this
dataset. As shown in Fig. 3, our method can still successfully
optimize both the 3D scene and camera poses even without
ground-truth poses, though it produces minor artifacts. When
trained with ground-truth poses, our method achieves im-
proved novel view synthesis, with fewer artifacts and sharper
textures.

5. Time Evaluations

As shown in Table 1, our method has a significant ad-
vantage in training time compared to NeRF-based methods.
Additionally, our method achieves an NVS rendering speed of
approximately 500 FPS, whereas NeRF-based methods reach
only about 0.5 FPS.

We mainly focus on demonstrating the effectiveness (i.e.
in terms of novel view synthesis and pose estimation) by
exploiting 3D-GS representation for event camera, and have
not tried to improve the efficiency of the proposed method. In



Figure 2. Qualitative evaluation of novel view image synt

hesis on the Replica dataset. The experimental results demonstrate that our method
renders higher-quality images when the camera is moving fast.
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Figure 3. Qualitative evaluation of novel view image synthesis on color event dataset. Ours (wo) denotes our method trained without
ground-truth camera poses, while Ours (w) denotes the method trained with ground-truth camera poses.




room0 room?2 office0 office2 office3
PSNRT  SSIM? LPIPS| PSNRT SSIMf LPIPS| PSNRT SSIM? LPIPS| PSNRT SSIM? LPIPS| PSNRT  SSIM{  LPIPS)

E2GS* 2175 077 025 2311 082 020 2009 0.75 018 1862 0.78 020 20.13 0.84 0.16
EvGGS 15.16 037 0.62 1585 034 061 1851 037 059 1095 027 069 13.13 029 0.66
Ours 2431 085 017 2375 079 023 2564 054 030 21.74 082 023 2118 0388 0.13

Table 2. NVS performance comparison on Replica dataset. * denotes we removed the supervision of blurred images from the original
E2GS.The result demonstrates that our method outperforms those two baseline methods.

particular, for the ease of the development, we still adopt the
Adam optimizer with a small learning rate (i.e. le-4) from
PyTorch for both motion and 3D-GS estimation. It requires
around 0.3s and 1.7s per event chunk to converge for both
tracking and mapping respectively. We would further improve
the efficiency by using a second-order optimization method
(e.g. levenberg-marquardt algorithm), which has been proved
to converge much faster to the optimal solution compared to
an first-order optimizer (e.g. Adam).
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