
Learning to Highlight Audio by Watching Movies

Supplementary Material

1. Project Page
We have created a project page (https://wikichao.
github.io/VisAH/) to illustrate our method and show-
case our results. We strongly encourage readers to visit
this webpage and use headphones. Please note that
the webpage may not be fully compatible with the Safari
browser; therefore, we recommend using Google Chrome
for an optimal viewing experience. On the demo page, we
show the following applications:
• Comparisons to Other Methods. We present examples

from THE MUDDY MIX DATASET, showcasing the fol-
lowing: the input poorly mixed video (which is created
through the process described in Sec.4, the highlighting
results produced by LCE [1], the outputs from our VisAH
model, and the original movie clips for comparison.

• Video-to-Audio (V2A) Generation Refinement. Gener-
ating audio from video has recently gained popularity due
to impressive video generation results and the growing
demand for an immersive audio-visual experience. Exist-
ing V2A models, such as Seeing-and-Hearing [3] and the
more recent MovieGen [2], have demonstrated promising
outcomes. However, these methods primarily focus on
generating temporally aligned audio for videos, which can
sometimes neglect the subtle differences between audio
sources. Our approach, inspired by cinematic techniques,
serves as a post-processing method to enhance audio qual-
ity in these cases.

• Real Web Video Refinement. Unlike movies, web videos
are often recorded in less controlled environments, which
can lead to undesirable effects. For example, viewers
may experience an overpowering personal voice in ego-
centric videos or focus on distracting sound sources due
to distance or background noise. In this context, we apply
our model to web videos, aiming to deliver an improved
cinematic-like audio-visual experience.
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Figure 7. Failure case analysis: the sound effect (waterfall) over-
whelms the speech.
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Figure 8. Failure cases analysis: Our method highlights the breath-
ing sound based on the video context but diverges from the movie
audio ground truth.

2. Failure Case Analysis

While our VisAH model is effective at highlighting audio
guided by video content, there are scenarios where it might
fail. Here, we provide case studies to illustrate the conditions
under which such failures occur.

In Fig. 7, the video captures a natural waterfall scene with
people hiking. The audio stream predominantly features the
sound of the waterfall, with occasional moments of speech.
Ideally, our VisAH model should balance these two audio
sources to enhance the audio-visual experience. However,
due to the overwhelming dominance of the waterfall sound,
the speech becomes difficult to perceive. This results in the
model failing to properly highlight the speech. As shown in
Fig. 7, the input and output audio remain similar in this case,
highlighting the challenge of separating and emphasizing
speech under such conditions.

In Fig. 8, we present an example where our method fails to
align perfectly with the original movie ground truth. Specifi-
cally, the breathing sound between 7 and 10 seconds is not
emphasized in the movie’s ground truth audio. However, the
corresponding video frames during this period show close-up
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Figure 9. Screenshot of subjective test interface.

shots of a man’s face, visually depicting the breathing action.
Given these video conditions, our method predicts output
audio that highlights the breathing sound, aligning with the
visual context but diverging from the original movie audio.
This failure highlights the need for a deeper understanding of
movie content to achieve better alignment with the intended
audio design.

3. Subjective Test Design

We illustrate the interface design of our subjective test in
Fig. 9. The instructions emphasize that users should evaluate
whether the speech, music, and sound effects in the videos
are well-balanced and acoustically pleasing, and whether the
audio aligns effectively with the video content.

Participants are shown four videos: the poorly mixed
input, the best-performing baseline (LCE), our method, and
the movie ground truth. After watching all the videos, users
are asked to rank them from 1 to 4, with 1 being the most
effective in audio highlighting and 4 being the least effective.
The analysis of the ranking results is presented in Fig. 5.
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Figure 10. Design of magnitude and waveform encoders. Each
encoder consists of five layers. The features from the waveform and
magnitude encoders are combined through element-wise addition
after the fifth layer, followed by an additional layer to encode the
fused features.

4. Network Details
We detail the design of the magnitude and waveform en-
coders, along with their input and output dimensions. As
illustrated in Fig. 10, each encoder consists of five layers, and
the output shapes for both branches after the fifth layer are
identical. At each layer, the output features are used for skip
connections (not shown in the figure). This design facilitates
straightforward element-wise addition of the two branches.
The fused feature is then processed through a shared encoder
layer before being passed to the latent highlighting module.
Similarly, the magnitude and waveform decoders mirror the
architectures of the encoders in reverse order.

5. Loss Function Details
Here, we give a more detailed illustration on the MR-STFT
(Multi-Resolution Short-Time Fourier Transform) loss func-
tion used for training the model. The MR-STFT loss is
implemented by computing the ℓ1 distance between the am-
plitude spectrograms of the predicted signal ŝ and the ground
truth signal s. Mathematically, the loss function can be ex-
pressed as:

LMR-STFT(ŝ, s) =

K∑
k=1

∥|STFTk(ŝ)| − |STFTk(s)|∥1 ,

where STFTk(·) denotes the Short-Time Fourier Transform
with the k-th window size, and | · | represents the magni-
tude of the spectrogram. The window sizes are set to 2048,
1024, and 512, corresponding to different resolutions of the
spectrogram. This multi-resolution approach allows the loss
function to capture both fine-grained and coarse-grained
spectral details of the signals. It is worth noting that the
training loss is intentionally simple, and any arbitrary wave-
form or spectrogram loss could be applied. We demonstrate



that even a standard loss, such as the MR-STFT loss, can
effectively drive training and lead to high-quality results.

Figure 11. An example of a video frame and its generated caption.

6. Motivation for Text Condition.
Textual captions supplement video frames by leveraging
strong reasoning capabilities of MLLMs. In Fig. 11, the
caption generated by InternVL2-8B captures not only visual
content, such as the appearance of individuals and room dec-
orations, but also the scene’s atmosphere, demonstrating the
added semantic richness that textual information can provide.
Moreover, it provides information more explicitly (e.g. “a
dark, elegant outfit") than the visual encoder may extract.
This supports the observation in ?? of why text conditioning
outperforms visual signals. Regarding the performance met-
rics of the visual encoder in ??, we hypothesize that CLIP
vision features are more compact, and the 1fps video sam-
pling rate drops motion information. Consequently, vision
features are easier to overfit, as observed with the peak per-
formance when the number of vision encoder layers is 3, and
more encoder layers cause smoothing. To address this, we
can try adopting a higher framerate (e.g., 8fps) or exploring
motion-aware architectures such as temporal transformers
or 3D convolutions, which better model temporal dynamics
while minimizing computational overhead. Learned down-
sampling can be another potential solution.

7. Inference Time Comparison
The inference times for VisAH, LCE, and L2R audio back-
bone are 0.028s, 0.017s, and 0.018s, respectively. While our
method requires more time, it remains efficient for practical
applications.

8. Analysis of Dataset Difficulty
We visualize the improvement trends in Fig. 12 across differ-
ent levels of dataset difficulty, as discussed in Sec 5.3.2 and
shown in Tab. 4. The magnitude of improvement is similar
for the high and moderate difficulty levels, demonstrating
that our method is robust in highlighting audio sources, even
when they are highly suppressed. In contrast, the lower im-
provement observed for the low-difficulty level is attributed
to the fact that the input audio is already relatively close

Figure 12. The improvement trend across the three difficulty levels
is evaluated over five metrics.

to the ground truth and thus inherently conveys the ground
truth highlighting effects to some extent. Consequently, the
potential for improvement is reduced in this group.

9. Limitations and Future Works

Our method leverages versatile temporal conditions as guid-
ance for audio highlighting, outperforming baseline methods
and demonstrating applicability to real-world scenarios, in-
cluding transferring knowledge from movies to daily and
generated videos. However, there are areas where improve-
ments can be made:

(i) Multimodal Condition Fusion. In our approach, we
use either the video or its corresponding frame captions as
guidance, achieving effective highlighting results. However,
integrating these two modalities remains an open challenge.
Text captions can infer the sentiment of the movie, comple-
menting the video stream. Designing a more sophisticated
strategy to fuse these modalities could enhance performance
and remains an interesting direction for future research.

(ii) Dataset Generation Strategy. This paper introduces a
three-step process for generating pseudo data through sepa-
ration, adjustment, and remixing. While effective, each step
can be further improved. For instance, employing multiple
separators with varying granularity levels could offer greater
flexibility and control. Additionally, replacing discrete loud-
ness categories with continuous sampling could introduce
more variability and challenge the model. Temporal loud-
ness adjustments, such as varying the loudness at one-second
intervals within a 10-second audio clip, could further enrich
the dataset and present more complex training scenarios.

In summary, this work presents a novel task—visually
guided acoustic highlighting—along with a versatile dataset
generation process and a universal network. While our
method demonstrates strong potential, many avenues for
improvement remain, paving the way for future advance-
ments in this area.
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