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Supplementary Material

1. Background

Base model. Following scalable 3D object generation
methods [5, 8, 10, 11], we firstly trains a VAE to compress
3D geometric representations into a low-dimensional latent
space. Specifically, x ∈ RL×6, which represents positions
and normals of L points, are mapped to latent space by
z = E(x), where z ∈ Rl×c, and l denotes the length of the
tokens after compression. The latents are converted back to
the 3D space by regressing signed distance function (SDF)
values using s = D(z). Following 3DShape2Vecset [9], the
VAE comprises of several transformer blocks.

Next, the denoising network ϵθ is trained in the com-
pressed latent space to transform noise ϵ ∼ N (0, I) into
the original 3D data distribution. During training, follow-
ing the rectified flow architecture [6], the original data z0 is
perturbed along a simple linear trajectory:

zt = tz0 + (1− t)ϵ (1)

for t = 1, · · · , T , where T represents the number of steps
in the diffusion process. In practice, we adopt logit-normal
sampling [1] to increase the weight for intermediate steps.
The denoising network ϵθ, featuring 21 attention blocks
with residual connections, is trained to approximate the
slope of the distribution transformation trajectory by min-
imizing the following loss:

Ez,y,ϵ∼N (0,I),t[∥z0 − ϵ− ϵθ(zt, t, τθ(y))∥22] (2)

where τθ is the image encoder, and y is the conditioning im-
age, incorporated into the denoising transformer via cross-
attention mechanism.

2. Implementation Details

Training. we trained MIDI to simultaneously generate
up to N = 7 instances. We selected this value based on an
analysis of the 3D-FRONT dataset [2], where we observed
that scenes containing five or fewer objects constitute the
majority, while scenes with more than five objects are rel-
atively rare. Instead of excluding scenes with more than 5
objects, we employed a clustering method to select five rep-
resentative objects from such scenes for training. During
training, we randomly dropped the image conditioning with
a probability of 0.1. We adopted the same strategy as in
the training of the base model, utilizing logit-normal sam-
pling [1] to increase the weight of intermediate diffusion
steps, which helps the model focus on the more challenging
stages of the generation process. For the training configura-
tion, we used a learning rate of 5× 10−5 and trained MIDI
for 5 epochs on 8 NVIDIA A100 GPUs.

Table 1. Training costs. (Batch size is set to 1)

Number of Instances N VRAM (GB) Speed (iter/s)

N = 1 15 1.50
N = 3 17 0.83
N = 5 19 0.55
N = 7 21 0.40

Inference. In our experimental setup, we first used
Grounded-SAM [7] to segment the scene images, obtaining
masks for individual objects. We then applied our multi-
instance diffusion model to generate compositional 3D in-
stances using classifier-free guidance [3], which enhances
the fidelity and coherence of the generated scenes. We
set the number of inference steps to 50 and the guidance
scale to 7.0. The entire process of generating a 3D scene
from a single image takes approximately 40 seconds on an
NVIDIA A100 GPU.

3. Additional Discussions

MIDI vs. compositional generation methods. As show
in Fig. 1, existing compositional generation methods in-
volve a multi-step process, generating 3D objects one by
one and then optimizing their spatial relationships. How-
ever, this type of methods lack the contextual information
of the global scene when generating objects, thus generat-
ing inaccurate or mismatched 3D objects. In addition, it is
very difficult to optimize the accurate scene layout based on
a single image, and the position of similar objects will be re-
versed when there are similar objects in the scene (as shown
in Fig. 1). In contrast, our method models object com-
pletion, 3D generation and spatial relationships in a multi-
instance diffusion model, thus generating coherent and ac-
curate 3D scenes.

Training costs. Table 1 presents the training costs for
MIDI. As the number of instances N increases, both GPU
memory requirements and training time increase. However,
even when N = 7, resource utilization remains manage-
able, demonstrating the scalability of MIDI.

Texture generation. To generate textured 3D scene from
single images, we firstly synthesize 3D geometry with our
MIDI, and then leverage MV-Adapter [4] to generate tex-
ture for each instance with the partial image of instance im-
age as input. The visualization results are shown in Fig. 2.
It is recommended to interactively experience the generated
3D scenes in our project page.

https://huanngzh.github.io/MIDI-Page/
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Figure 1. Detailed comparison between existing compositional generation methods and our multi-instance diffusion.
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Figure 2. Visualization results of textured 3D scene generation
with MV-Adapter [4].

Figure 3. Failure cases.

4. Limitations
We present two typical failure examples of MIDI in Fig. 3.
While MIDI generates 3D instances within the global scene
coordinate system—specifically, a normalized space rang-
ing from −1 to 1—this approach causes smaller objects to

occupy a relatively minor portion of the overall space. Con-
sequently, these small objects may have lower resolution
compared to objects generated in their canonical spaces,
where the entire capacity of the model can focus on a single
object. We believe that enhancing the multi-instance dif-
fusion model to generate objects in their canonical spaces,
along with their spatial positions within the scene, could ad-
dress this issue by allowing each object to be generated at
optimal resolution.

Also, our model is constrained by the simplicity of inter-
action relationships present in existing scene datasets. As
a result, MIDI may struggle to generate scenes featuring
intricate interactions, such as objects with dynamic inter-
plays. We anticipate that introducing more complex and
diverse training data, encompassing a wider variety of ob-
ject interactions and spatial relationships, would enhance
the model’s capacity to generalize at the level of object spa-
tial interactions. This improvement would enable the gener-
ation of scenes with more sophisticated and realistic inter-
object dynamics.
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