MTADiffusion: Mask Text Alignment Diffusion Model for Object Inpainting

Supplementary Material

1. Ablation studies for the edge loss and style
loss

To evaluate the influence of different training losses of
our method, we first sampled 1 million subsets from our
dataset for fast convergence. The model was then trained
for 100,000 iterations using data from the subset with dif-
ferent loss functions. Table Al shows the quantitative re-
sults on BrushBench. As we can see, adding edge prediction
loss and style-consistency loss brings about improvements
in image quality and masked region preservation, especially
in the metrics of IR [39] and PSNR.

Figure Al shows the qualitative influence of different
losses. It is obvious that the edge loss enhanced structural
stability, while the style loss improved style consistency.
Combining noise loss, style loss, and edge loss yielded the
best results.

Table Al. Comparison of different loss functions. NL denotes
Noise Loss, SL denotes Style Loss, and EL denotes Edge Loss.
For clarity, IR is scaled by 10, and LPIPS and MSE by 1000.

Loss IRT AST | PSNRT LPIPS| MSE] | CLIP Sim T
NL 1252 638 | 3152 1923  0.83 26.41
NL+EL | 1257 639 | 31.65 19.19 083 26.48
NL+EL+SL | 12.63 639 | 3172  19.09 082 26.44
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Figure Al. Influence of different loss functions.

2. Qualitative results on BrushBench and Edit-
Bench

Figures A2 and A3 show the visual results of our method
in BrushBench [9] and EditBench [34], respectively. We
compared our method with SDI [25], CNI [42], PowerPaint
[45], and BrushNet [9]. It can be seen that our results show
superiority in semantic alignment, structure stability and
style consistency, which resulted in reasonable and natural
images.
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Figure A2. Qualitative Results on BrushBench.
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Figure A3. Qualitative Results on EditBench.
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