
Supplementary: Modeling Multiple Normal Action Representations for Error
Detection in Procedural Tasks

Overview

In this supplementary material, we provide the following
sections:

• Sec. A: More details about our proposed Adaptive Mul-
tiple Normal Action Representation (AMNAR) frame-
work.

• Sec. B: More details about the experiment setups.
• Sec. C: More visualizations for further demonstration on

the effectiveness of the proposed AMNAR.

A. More Details about AMNAR

A.1. Potential Action Prediction Block

The Potential Action Prediction Block (PAPB) is a key com-
ponent designed to predict all potential next actions based
on the task graph G and the executed action sequence s.
The variable-definition reference table and pseudocode for
PAPB are shown in Tab. S1 and Algorithm 1, respectively.

Adjacency List Construction. PAPB begins by converting
the task graph G into an adjacency list A, where each node
in the graph links to its direct successors.

Longest Subsequence Identification. PAPB employs dy-
namic programming to find the longest subsequence s∗ in
s that adheres to the relationships defined by G. The al-
gorithm maintains two tables: subseq[i], which stores the
longest non-branching subsequence ending at index i, and
dp[i], which stores the subseq[i]. A non-branching subse-
quence is defined as a sequence of nodes that form a contin-
uous path in the task graph G, where all nodes are connected
sequentially without any splits or branches (e.g., [0, 1, 2] in
Fig. S1).

For each action yi in s, the algorithm iterates over all
previous actions yj (where j < i) and checks whether yi
and yj are connected in the task graph G. If this condition
is met, dp[i] and subseq[i] are updated as follows:

dp[i] = max(dp[i], dp[j] + 1), (1)

subseq[i] =

{
subseq[j] ∪ {yi}, if dp[j] + 1 > dp[i],
subseq[i] ∪ (subseq[j] ∪ {yi}), if dp[j] + 1 = dp[i].

(2)
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Figure S1. The Potential Action Prediction Block (PAPB) derives
the longest matching subsequence from the executed sequence us-
ing the task graph. This subsequence is then used to identify all
reachable nodes, representing valid next actions. This figure is re-
produced from the main text for reference.

After processing s, the algorithm identifies the maxi-
mum value in dp, locating the index k with the longest non-
branching subsequence L.
Merging Connected Nodes. While the longest subse-
quence identified in dynamic programming represents a
non-branching path (e.g., [0, 1, 2] in Fig. S1), it may not
capture all executed actions in scenarios where multiple
branches exist in the task graph. To address this, PAPB iter-
atively examines each subsequence. For each subsequence,
if any of its nodes matches a node in L, the subsequence is
considered connected to L, and its nodes are merged into
L. This merging process ensures that L includes all nodes
relevant to the executed actions, resulting in the complete
merged sequence s∗, which accurately reflects all executed
actions within the task graph.
Next Action Prioritization. Based on s∗, PAPB computes
the set of potential next actions PA as:

PA = (
⋃
a∈s∗

A[a]) \ s∗. (3)

In this formula, A[a] represents the set of direct successors
of node a in the task graph G, as derived from the adjacency
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list. By iterating over all nodes a in the longest merged sub-
sequence s∗, the union

⋃
a∈s∗ A[a] aggregates the succes-

sors of all nodes in s∗. The subtraction \s∗ ensures that
only actions not already included in s∗ are retained in PA.
This guarantees that PA contains all valid next actions that
can logically follow the executed actions, without duplica-
tion.

PAPB efficiently combines dynamic programming and
graph traversal to provide actionable insights from s and G.
For detailed implementation, refer to Algorithm 1.

Algorithm 1 Potential Action Prediction Block (PAPB)

Input: Task graph G, Executed action sequence s
Output: Prioritized list of next actions PA
# Build Adjacency Lists:
Initialize A[u] = ∅ for all u ∈ G
for each edge (u, v) in G do
A[u]← A[u] ∪ {v}

end for
# DP Process:
Initialize dp[i]← 1 and subseq[i]← {yi} for all i
for i← 1 to n do

for j ← 1 to i− 1 do
if yi ∈ A[yj ] or yj ∈ A[yi] then

if dp[j] + 1 > dp[i] then
dp[i]← dp[j] + 1
subseq[i]← subseq[j] ∪ {yi}

else if dp[j] + 1 == dp[i] then
subseq[i]← subseq[i] ∪ subseq[j] ∪ {yi}

end if
end if

end for
end for
# Collect Max-Length Subsequences:
k ← max(dp[1], dp[2], . . . , dp[n])
L←

⋃
{subseq[i] | dp[i] = k}

# Merge Connected Nodes in L:
Initialize s∗ ← L
for each node in L do

for each neighbor ∈ A[node] do
if neighbor ∈ L then

s∗ ← s∗ ∪ {neighbor}
end if

end for
end for
# Collect Potential Next Actions:
PA← (

⋃
a∈s∗ A[a]) \ s∗

Return PA

A.2. Representation Reconstruction Block
The Representation Reconstruction Block (RRB) is de-
signed to reconstruct multiple normal action representations

Table S1. Variable Definitions of PAPB

Variable Definition

G Task graph
s Executed action sequence
s∗ The longest matching subsequence
A Adjacency list of G
A[a] The set of direct successors of node a
subseq[i] Longest non-branching subsequence ending at index i
dp[i] Length of subseq[i]
k Index with the maximum dp[k]
L Longest non-branching subsequence
PA Final potential next actions

…
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Figure S2. Architecture of the Representation Reconstruction
Block (RRB). The RRB reconstructs the i-th normal action rep-
resentation f normal

t,i for time t by combining the frame-wise refined
features F1:edt−1 (key and value) and the action class embedding
f class-emb
t,i (query).

at time t using the frame-wise features of executed actions
and the embedding of the t-th action. The RRB consists
of two key components: a dilated convolutional layer and a
local cross-attention module, as illustrated in Fig. S2.

To ensure temporal causality, all modules within the
RRB are implemented in a causal manner. Specifically,
when reconstructing the normal action representations at
time t, the frame-wise features corresponding to time t and
any future frames are not accessible, thereby adhering to the
sequential nature of the task.

Dilated Convolutional Layer. The dilated convolutional
layer employs a kernel size of 3 and consists of 5 layers.
The dilation rate of the first layer is set to 1, while the subse-
quent layers follow an exponential growth pattern. Specifi-



cally, the dilation rate di for the i-th layer is defined as:

di = 3i. (4)

This design allows the receptive field to expand exponen-
tially with depth.
Local Cross Attention. The local cross attention module
consists of a single attention layer with a local window
length of 32 and 2 attention heads. Depthwise convolu-
tions project the query, key, and value features, with causal
padding ensuring only past and current time steps are acces-
sible, preserving temporal causality.
Action Class Embedding. As mentioned in Section 3.3
of the main text, F1:edt−1 represents the frame-wise re-
fined visual features extracted from the Action Segmenta-
tion Model up to frame edt−1. The f class-emb(y) represents
the class embedding for action class y, computed as the
mean feature of all action samples belonging to this class.
Formally, it is defined as:

f class-emb(y) =

∑
t∈Iy

f action
t

Ny
, (5)

where Iy is the set of indices for samples belonging to class
y, Ny = |Iy| is the total number of samples in this class,
and f action

t represents the feature of the t-th action sample.
This class embedding serves as a representative feature for
action class y.

The f class-emb
t,i represents the class embedding for the i-th

potential action class corresponding to the t-th action. It is
used as the query input in the Local Cross Attention module
(see Fig. S2), where it interacts with the key and value fea-
tures derived from the frame-wise refined features F1:edt−1

after processing through the dilated convolution layer.

B. More Experimental Setups
In this section, we provide comprehensive details about the
experimental setup to complement the descriptions in the
main text. Specifically, we elaborate on the preprocessing
and usage of the HoloAssist[3] datasets, frequency analysis
of multiple valid next actions, as well as the experimental
environment and hyperparameter settings.

B.1. HoloAssist Dataset
Since the official release of the HoloAssist dataset lacks a
designated test set, we train our AMNAR and EgoPED [1]
frameworks on the training set, compute thresholds using
the training set, and evaluate performance on the validation
set. The tasks used for training and validation, along with
their respective durations, are summarized in Table S2. To
train the Action Segmentation Model (ASM), we utilize the
fine-grained action annotations, specifically either verb or
noun labels, as segment labels.

Table S2. Duration of Training and Validation Sets for HoloAssist
Tasks (in minutes)

Task Name Train (min) Val (min)

atv 84.63 12.37
circuitbreaker 45.30 8.62
coffee 137.17 16.38
computer 226.43 38.95
dslr 289.22 38.15
gladom assemble 320.95 50.60
gladom disassemble 211.03 29.02
gopro 561.58 78.18
knarrevik assemble 843.08 114.08
knarrevik disassemble 465.00 71.63
marius assemble 357.58 52.28
marius disassemble 208.38 36.83
navvis 122.65 21.25
nespresso 225.47 28.47
printer big 162.15 26.87
printer small 295.05 42.32
rashult assemble 942.42 128.90
rashult disassemble 545.65 68.47
switch 469.07 70.82

The HoloAssist training set includes both normal and er-
roneous actions. To ensure accurate learning of normal ac-
tion representations, we train AMNAR exclusively on nor-
mal actions, excluding erroneous ones during training. For
HoloAssist experiments, due to the absence of an official
test set, we follow a standard split by training on the pro-
vided training set (approximately 166 hours of video from
350 instructor-performer pairs) and evaluating on the vali-
dation set. Additionally, we exclude the “Belt” task from
final evaluations, as it contains only one error-free sample,
which could skew performance metrics.

Moreover, some action classes appear only in the vali-
dation set and are absent from the training set. To main-
tain consistency during inference, we classify these unseen
classes as background actions. For task graph construction,
since HoloAssist lacks predefined task graphs, we generate
them by analyzing all training sequences.

We also introduce a random baseline for HoloAssist ex-
periments. This baseline employs the same ASM trained
with the aforementioned strategy and, during inference, ran-
domly classifies each action segment as either normal or er-
roneous.

B.2. CaptainCook4D Dataset
The CaptainCook4D dataset [2] is a large-scale egocentric
4D dataset designed for understanding errors in procedu-
ral cooking activities. It comprises 384 recordings (94.5
hours) of individuals performing 24 different recipes in real



kitchen environments. The dataset includes videos of par-
ticipants correctly following recipe instructions as well as
instances where they deviate and introduce errors. It pro-
vides 5.3K step annotations and 10K fine-grained action an-
notations, with errors categorized into seven distinct types.
Data modalities include RGB video, depth, 3D hand joint
tracking, and IMU data, captured using a head-mounted Go-
Pro and HoloLens2.

For our experiments, since CaptainCook4D lacks prede-
fined task graphs, we generate them by analyzing all train-
ing sequences, similar to the approach used for HoloAs-
sist. To focus on execution-related errors, we exclude the
“Missing Step” and “Ordering” error types during evalua-
tion, as these sequence-level anomalies are beyond the pri-
mary scope of AMNAR.

B.3. Task Graph Generation for Procedural Task
Modeling

To better model procedural tasks in both HoloAssist and
CaptainCook4D, we derive task graphs from action se-
quences, as these datasets do not provide predefined graphs.
Each task graph is represented as a Directed Acyclic Graph
(DAG) that captures valid action transitions based on ob-
served sequences.

The graph construction consists of three steps: 1. Ex-
tract Action Sequences: Identify non-background action
sequences from the recordings and insert a start state (e.g.,
background) at the beginning of each sequence. 2. Com-
pute Transition Weights: Measure the co-occurrence fre-
quency of each action pair across all sequences to form a
weighted transition matrix. 3. Build a Maximum-Weight
DAG: Use a greedy algorithm to select the highest-weight
edges while disallowing cycles, preserving only acyclic
paths.

This procedure ensures that frequent, logically coherent
transitions are included in the final task graph, providing
a reliable structure for analyzing procedural tasks. For the
complete pseudocode of this task graph generation process,
please refer to Algorithm 2.

This approach ensures the task graph reflects frequent,
logical action transitions while maintaining an acyclic struc-
ture, suitable for procedural task analysis.

B.4. Frequency Analysis of Multiple Valid Next Ac-
tions

In Section 4.4 of the main text, we compare average im-
provements across tasks, noting that the coffee task has the
highest occurrence of multiple valid next actions. This
observation stems from a frequency analysis of multi-
ple valid next actions using the following metrics: non-
deterministic action ratio, average number of valid next
actions and average maximum transfer probability.

A non-deterministic action is defined as an action

Algorithm 2 Task Graph Generation

Input: Action sequences S
Output: Task graph G as a list of edges
# Compute Transition Weights:
Initialize T [(u, v)]← 0 for all possible (u, v)
for each seq ∈ S do

for i← 0 to len(seq)− 2 do
for j ← i+ 1 to len(seq)− 1 do

T [(seq[i], seq[j])]← T [(seq[i], seq[j])] + 1
end for

end for
end for
# Sort Transitions by Weight:
P ← sort(T.items(), key = weight, descending)
# Build Maximum-Weight DAG:
Initialize G← ∅
for (u, v) in P do

if adding (u, v) to G keeps G acyclic then
G← G ∪ {(u, v)}

end if
end for
Return G

whose preceding action has more than one potential next ac-
tion. As illustrated in Figure S1, consider action a1, which
follows action a0. Since action a0 has multiple potential
next actions (actions a1, a4, a7), action a1 is considered a
non-deterministic action (as are a4 and a7).

The non-deterministic action ratio refers to the propor-
tion of non-deterministic actions among all actions within
a task. A higher ratio indicates a greater prevalence of
multiple valid next actions, contributing to task complex-
ity. As shown in Table S3, the tasks tea, coffee, and oat-
meal have notably high non-deterministic action ratios of
75.00%, 70.59%, and 69.23%, respectively.

The average number of valid next actions represents
the mean count of potential valid next actions for each ac-
tion in a task. For instance, if action a0 has potential next
actions a1, a2, and a3, the number of valid next actions is 3.
A higher average indicates that actions generally have more
possible subsequent actions, increasing the task’s complex-
ity. In terms of this metric, the coffee task stands out with a
value of 2.82, higher than those of other tasks.

The average maximum transfer probability is the av-
erage of the highest probabilities with which actions transi-
tion to their next actions. For example, if action a0 tran-
sitions to a1, a2, and a3 with probabilities of 20.00%,
25.00%, and 55.00%, the maximum transfer probability for
a0 is 55.00%. A lower average maximum transfer probabil-
ity indicates greater uncertainty in transitioning to a specific
next action, reflecting higher diversity in valid next steps.
As shown in Table S3, the coffee and oatmeal tasks have



lower average maximum transfer probabilities of 67.27%
and 67.09%, respectively.

The coffee task stands out across all three metrics, indi-
cating a high frequency of multiple valid next actions. This
complexity makes it the most suitable task for demonstrat-
ing the effectiveness of our Adaptive Multiple Normal Ac-
tion Representation (AMNAR) framework. Consistent with
our frequency analysis, AMNAR achieves the most sub-
stantial improvement in error detection accuracy for the cof-
fee task, as evidenced in Table 1 of the main text. This cor-
relation underscores the advantage of AMNAR in handling
tasks with diverse and multiple valid action sequences.

Table S3. Metrics for Task Transition Matrices Across Five Tasks.
Higher non-deterministic ratios (↑) indicate greater complexity
due to multiple valid next actions. Higher average numbers of
valid next actions (↑) suggest increased complexity of a task.
Lower average maximum transfer probabilities (↓) indicate greater
uncertainty in action transitions.

Metric Tea Coffee Pinwheels Oatmeal Quesadilla

Non-deterministic Ratio (%) ↑ 75.00 70.59 26.67 69.23 40.00
Avg. Valid Next Actions ↑ 1.75 2.82 1.13 1.85 1.20
Avg. Max Transfer Prob. (%) ↓ 74.02 67.27 88.15 67.09 75.00

B.5. EDA of non-deterministic actions

In Sec. 4.4 of the main paper, we evaluate the Error De-
tection Accuracy (EDA) of non-deterministic actions. This
experiment measures the average frame-wise accuracy of
non-deterministic actions in error detection.

B.6. Experimental Environment and Hyperparam-
eters

All experiments are conducted on an Nvidia Tesla V100
GPU with 32GB of VRAM. The training process uses a
batch size of 8 and runs for 200 epochs. The learning rate is
initialized to 0.001 and adjusted dynamically using a cosine
annealing schedule.

C. Visualization Examples

Fig. S3 presents additional visualization examples of error
detection using the AMNAR framework on the EgoPER
dataset [1]. These examples highlight how AMNAR effec-
tively identifies various types of errors in procedural tasks,
demonstrating its robustness and adaptability in complex
scenarios.

As shown in Fig. S4, the AMNAR framework accurately
detects errors even when they occur within actions sharing
the same label, effectively distinguishing between normal
and erroneous executions.
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Action label: Measure 4 Tablespoons of quick-cook oats
Error: Directly pour quick oats into bowl

Action label: # Additional action
Error: Weigh bowl containing oats using scale

Ground Truth:

Prediction:

Ground Truth:

Prediction:

Sample: oatmeal_u1_a3_error_017

Sample: oatmeal_u1_a4_error_013

Action label: Measure 4 Tablespoons of quick-cook oats
Error: Directly pour quick oats into bowl

Action label: # Additional action
Error: Clean spoon after stirring using paper towel

Action label: Stir using spoon
Error: Stir using knife

erroneousnormal

erroneousnormal

Ground Truth:

Prediction:

Sample: quesadilla_u1_a5_error_002

Action label: Place tortilla on cutting board
Error: Drop tortilla

Action label: Place tortilla on cutting board
Error: Discard tortilla and place a new one

Action label: # Additional action
Error: Add a handful of raisins to tortilla

erroneousnormal

Figure S3. Visualization examples from the EgoPER dataset using the AMNAR framework. In the top sample, two errors are detected: a
misoperation—quick oats are poured directly into the bowl without measuring, and an additional action. The middle sample also contains
three errors: a misoperation, an additional action, and using the wrong tool—stirring with a knife instead of a spoon. The bottom sample
illustrates a sequence of errors: an accidental error—dropping the tortilla to the ground, followed by a corrective action—replacing the
dropped tortilla with a new one, and finally an additional action—adding an incorrect ingredient.



Segments:

oatmeal_u1_a4_error_016

Action label: Stir using spoon
Error Detection Result: √

Action label: Stir using spoon
Error Detection Result: √

Segments: … …

Action label: Stir using spoon
Error Detection Result: √

Action label: Stir using spoon
Error Detection Result:
Using Knife instead of Spoon 

×

sharing same action label

韦锦4

Figure S4. In this example, the AMNAR framework encounters two actions sharing the same label: one is a correctly executed action
(normal), and the other is an erroneous action. Despite the shared label, AMNAR successfully detects the error in the second action (using
a knife instead of a spoon) while correctly identifying the first action as normal, avoiding any false positives.


	More Details about AMNAR
	Potential Action Prediction Block
	Representation Reconstruction Block

	More Experimental Setups
	HoloAssist Dataset
	CaptainCook4D Dataset
	Task Graph Generation for Procedural Task Modeling
	Frequency Analysis of Multiple Valid Next Actions
	EDA of non-deterministic actions
	Experimental Environment and Hyperparameters

	Visualization Examples

