PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation
—Supplementary Material-

S1 Proof

As introduced in the main paper, PatchDPO estimates the patch quality of the images, p(@ref) € R¥*W and p(xgen) €
RH*W “and accordingly leverages a weighted training method for model optimization using the estimated patch quality.
Specifically, PatchDPO trains the original personalized generation model with an image reconstruction task, then assigns
higher training weights to the patches with higher quality, while assigning lower training weights to the patches with lower
quality. Finally, the loss function of PatchDPO (with the task of reconstructing x,.s with x,.¢) is calculated as below:
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In this section, we prove that assigning higher training weights to the patches could facilitate the generation of these
patches. Note that we complete this proof in a simplified case (with a linear layer) without loss of generalization, since the
linear layers are widely present in the UNet of the diffusion model.

Definition: Let € R? denote the original image (the image is flattened for convenience), & € R denote the noisy image,
€g denote the model for noise prediction with W € RM*M a5 weight, p € [0, 1] denote the patch quality (corresponding
to each element in x), then € = & — x is the noise to be predicted (e € RM), and the loss for image reconstruction is

M
L=|plea(x) —€)|3 = [[p(Wz — €)||3 = D p?(W.:Z — €;)? (note that Ciexs, Tref, t are omitted here for simplicity).
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Theorem: For each element i, the absolute value of distance between the updated difference (€¢(Z); — €;)? and the original
difference (€ (Z); — €;)? is positively correlated with p; (€ is the updated model with W as weight, 7 is the learning rate).
M
Proof. According to £ = ||p(es(Z) — €)||2 = |[p(WZ — €)||3 = 3 p?(W.Z — €;)?, then:
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Therefore, at each step of gradient descent, each element "z j of W is updated as below:
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Next, for each element i, A; = (&y(Z); — €;)? — (€9(Z); — €;)? is calculated as below:
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Note that the value of learning rate 7 is small enough to ensure the decrease of loss £ (i.e., 0 < 1 —2np? >° &7 < 1, and
Jj=1

M

A; < 0). Therefore, increasing p; will decrease (1 —2np? > & ) and A;, thus increasing ||A;||. Finally, ||A;]| is positively
j=1

correlated with p;. The proof is ended here. [

This theorem indicates that in PatchDPO, the generation of high-quality patches is rewarded using the high training
weights, while the generation of low-quality patches is punished using the low training weights.

S2 Experiments

S2.1 Implementation Details

S2.1.1 Multi-Object Generation

Dataset. The multi-object dataset for the PatchDPO training also consists of 50,000 images, which is constructed in a similar
manner as the single-object dataset. Detailedly, for the multi-object dataset, we utilize ChatGPT to generate the text prompts
in the format of “An {object 1} and an {object 2} in the {background}”. Besides, when feeding the text prompts into Stable
Diffusion [10], we also instruct it to generate the non-overlapped objects to avoid confusion between objects.

Model. Our main experiments are conducted on the pre-trained IP-Adapter-Plus [15], which adopts the decoupled cross-
attention mechanism to merge the text features and reference image features into the middle layers of diffusion model eg.
Specifically, in the decoupled cross-attention mechanism, the latent image features Z € R(«"We)xDe in a middle layer are
fed into a cross-attention module to interact with the text features Ciex € R5text X Prext (extracted with a text encoder):
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Here, Q = ZWR, Kot = ctextWtext, Viext = ctextWtext are the query, key, and value matrices of the attention
operation, respectively, and WQ € RP<xPe WK ¢ RDtexexDe WV ¢ RDwextXDe gre the learnable weight matrices
for feature projection. Besides, Z is also fed into another cross-attention module to interact with the reference image features

€ R%ms*Dims (extracted with an image encoder) for the i-th reference image:

Zioxt = Attn(Q, Kiext, Viext) = Softmax( ) Viext. @)
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Likewise, K! = = WK vi = WY and WE € RPmzxDe WV ¢ RDPimsXDe gre the learnable
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weight matrices for projecting the reference image features. Next, for M reference images provided in multi-object genera-

tion, the final output Z,,., of the decoupled cross-attention mechanism is the addition of Zy; and {Zlmg fvzflz

Znew - Ztext + Z Zlmg (7)



Method DINO CLIP-I CLIP-T Avg.

DreamBooth e [11] 0.3849 0.6636 0.7383 0.5956
Custom Diffusion (Opt) e [5] 0.3684 0.6595 0.7599 0.5959
Custom Diffusion (Joint) e [5] 0.3799 0.6704 0.7534 0.6012

Mix-of-Show § [3] 0.3940 0.6700 0.7280 0.5973

MC? § [4] 0.4060 0.6860 0.7670 0.6197
FastComposer x [14] 0.3574 0.6552 0.7456 0.5861
A-ECLIPSE x [8] 0.3902 0.6902 0.7275 0.6026
ELITE * [13] 0.3347 0.6460 0.6814 0.5540

IP-Adapter-Plus  [15] 0.3992 0.6904 0.7655 0.6184
SSR-Encoder x [17] 0.3970 0.6895 0.7363 0.6076

PatchDPO 0.4168 0.6945 0.7726 0.6280

Table 1. Performance comparison for multi-object personalized generation on Conceptl01. The upper methods are finetuning-based
methods, the bottom methods are finetuning-free methods, and bold font denotes the best result. Each CLIP-T score is multiplied by 2.5
following Custom Diffusion.

Method DINO CLIP-I CLIP-T Avg.

DreamBooth t [11] 0.430  0.695 0.308 0.478
Custom Diffusion 7 [5] 0.464  0.698 0.300 0.487
Subject-Diffusion t [5] 0.506  0.696 0.310 0.504
IP-Adapter-Plus x [15] 0.468  0.683 0.315  0.489

PatchDPO 0.506 0.705 0.322 0.511

Table 2. Performance comparison for multi-object personalized generation on MultiDreamBench. The results of methods marked with
1 are from the paper of Subject-Diffusion [7], and the results of methods marked with x are re-implemented faithfully following their
released code and weights. Bold font denotes the best result.

Method DINO CLIP-I CLIP-T Avg.
IP-Adapter [15] 0.608  0.809 0274  0.564
IP-Adapter (PatchDPO) 0.625  0.817 0.281 0.574
ELITE [13] 0.652 0.762 0.255  0.556
ELITE (PatchDPO) 0.678  0.776 0.264 0.573
IP-Adapter-Plus [15] 0.692  0.826 0.281  0.600

IP-Adapter-Plus (PatchDPO)  0.727  0.838 0.292  0.619

Table 3. Ablation experiments of PatchDPO for different pre-trained personalized generation models on DreamBench.

In this manner, the information of multiple reference images is incorporated into the diffusion model to generate the
corresponding images.
S2.1.2 Diffusion-DPO

Direct preference optimization [9] simplifies RLHF by training the model directly from human preferences, and the DPO
loss Lppo is calculated as below:
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where o(-) denotes the sigmoid function, p,.r denotes the original model, * and 2! denote the “winning” and “losing”
samples generated from the condition c¢. DPO optimizes the model by aligning its output closer to £ while distancing it
from z!. Diffusion-DPO [12] adapts this original DPO loss to the diffusion model:



Method DINO CLIP-1 CLIP-T

Re-Imagen [1] 0.600 0.740 0.270
A-ECLIPSE [8] 0.613 0.783 0.307
ELITE [13] 0.652 0.762 0.255
IP-Adapter [15] 0.608 0.809 0.274
IP-Adapter-Plus [15] 0.692 0.826 0.281
SSR-Encoder [17] 0.612 0.821 0.308
BLIP-Diffusion [6] 0.594 0.779 0.300
Subject-Diffusion [7] 0.711 0.787 0.293
JeDi [16] 0.679 0.814 0.293
PatchDPO 0.727 +0.002 0.838 +0.002 0.292 + 0.002

Table 4. Performance comparison (with standard deviation) for single-object personalized generation on DreamBench.

Method DINO CLIP-1 CLIP-T

FastComposer x [14] 0.3574 +£0.0025 0.6552 +0.0015 0.7456 =+ 0.0019
A-ECLIPSE x [8] 0.3902 +0.0019 0.6902 + 0.0007 0.7275 =+ 0.0017
ELITE % [13] 0.3347 £0.0022 0.6460 +0.0011 0.6814 =+ 0.0026
IP-Adapter-Plus x [15] 0.3992 4 0.0045 0.6904 +0.0019 0.7655 + 0.0033
SSR-Encoder % [17]  0.3970 + 0.0027 0.6895 +0.0016 0.7363 =+ 0.0020

PatchDPO 0.4168 + 0.0024 0.6945 + 0.0026 0.7726 =+ 0.0027

Table 5. Performance comparison (with standard deviation) for multi-object personalized generation on Concept101. Each CLIP-T score
is multiplied by 2.5 following Custom Diffusion.

Lpiftusion-DPO = ~E (g a1)D t0t4(0,7) 20 ma (i |2) )~ (e} !

log o (—ATw(Ae) (€ —eo (@i, )13~ € — et (@, )13~ (€' — € (ah, 1)[I3 — [|€' — €ret (7, 1)[3)))-

€))

We utilize this Diffusion-DPO loss to train the model for comparison with PatchDPO. Specifically, the image prefer-
ence (“winning” sample v.s “losing” sample) required for DPO training is estimated by comparing the image similarity
generated by the ViT-Base model [2]. As shown in Table 4 of the main paper, Combination (3) (Diffusion-DPO) fails
to improve the performance of the original model, because Diffusion-DPO would wrongly reward the low-quality patches
in the “winning” sample, while wrongly punishing the high-quality patches in the “losing” sample. Instead, Combination
(4) (PatchDPO) correctly rewards the high-quality patches and punishes the low-quality patches, thus achieving a huge per-
formance improvement.

S2.2 Multi-Object Personalized Generation

Table | demonstrates the quantitative results of different methods on ConceptI01. Note that the results of methods marked
with e are from the GitHub page of Custom Diffusion [5], the results of methods marked with § are from the paper of MC? [4],
and the results of methods marked with x are re-implemented faithfully following their released code and weights (their
original evaluation datasets have not been made public).

MultiDreamBench is a benchmark for the evaluation of multi-object personalized image generation, by combining the
reference images from the original DreamBench [11] for generation. MultiDreamBench is proposed by Subject-Diffusion [7],
and we evaluate our model on it for comparison with Subject-Diffusion. As shown in Table 2, PatchDPO can also improve
the performance of original IP-Adapter-Plus, and surpass existing personalized generation methods on MultiDreamBench.

S2.3 More Ablation Experiments

Different pre-trained models. Besides IP-Adapter-Plus, this work also employs PatchDPO on other pre-trained personalized
generation models (i.e., ELITE [13], original IP-Adapter [15]). As shown in Table 3, PatchDPO can also improve the
performance of ELITE and the original IP-Adapter on DreamBench, exhibiting its strong capability for generalization.



S2.4 Computational Cost

PatchDPO continues to train the pre-trained personalized generation model, eliminating the need to retrain the model from
scratch. Besides, PatchDPO utilizes a small-sized but high-quality dataset (consisting of 50,000 images) for training. Con-
sequently, PatchDPO is computationally efficient compared to the original pre-training stage. Specifically, the PatchDPO
training for single-object personalized generation on IP-Adapter-Plus takes only 4.30 Hours, and the PatchDPO training for
multi-object personalized generation on IP-Adapter-Plus takes only 6.23 Hours.

S2.5 Standard Deviation of Performance

In this section, we provide the standard deviation of performance on both DreamBench and Concept10I of the main paper.
As shown in Table 4 and Table 5, our model can achieve relatively stable performance, compared to other methods.

S3 More Visualizations

Natural images & generated images. Figure | demonstrates the comparison between natural images (from D; atura1) and
our generated images (from D,,,s), indicating that natural images contain objects of complex details and have confusing
objects and backgrounds, which seriously hinder model training. As shown in Table 4 of the main paper, Combination
(1) (using Dypaturar) seriously degrades the image-alignment (DINO, CLIP-I) of model, and Combination (2) (using Doy;s)
benefits the model performance.

Personalized image generation with human image. Figure 2 presents the visualization results of single-object personalized
image generation with the human image as reference (5 famous persons and 2 persons from Concept101), implying that our
method performs well in preserving the identity details of human faces.

Single-object personalized image generation. Figure 3 demonstrates more qualitative results of different methods on
DreamBench. Compared to existing methods, PatchDPO exhibits superior performance in preserving the local details of the
reference image, resulting in the generation of higher quality.

Multi-object personalized image generation. Figure 4 demonstrates more qualitative results of different methods on Con-
ceptl01, validating the outstanding performance of PatchDPO on multi-object personalized image generation.



Figure 1. Comparison between natural images (from Dyatural) and our generated images (from Douyrs).
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Figure 2. Qualitative comparisons of different methods on personalized image generation with the human image as reference.
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Figure 3. Qualitative comparisons of different methods on single-object personalized image generation.
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Figure 4. Qualitative comparisons of different methods on multi-object personalized image generation.



