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In this supplementary material, we first introduce the
implementation details for reproducibility of our results.
We also conduct more quantitative, qualitative and abla-
tion experiments to demonstrate the effectiveness of our
method. Finally, we discuss the protocol for dataset clean-
ing. More qualitative results can be found at https://
www.buzhenhuang.com/works/CloseApp.html.

0.1. Implementation Details
The diffusion model contains a motion embedding layer, a
positional encoding layer, and 4 transformer blocks. It also
includes a ViT backbone and 2 linear layers to process the
image and keypoints features. We use 100 and 5 diffusion
timestep for the training and testing phases, respectively.
DDIM sampling strategy [7] is adopted during the denois-
ing process. In the optimization, we first diffuse the initial
predicted motions to the first timestep xt, and then opti-
mize the network parameters of proxemics prior to recon-
struct the final motions. The proxemics prior is pretrained
with AdamW [4] optimizer using a learning rate of 1e-4
on a single GPU of NVIDIA GeForce RTX 4090. The im-
plementation is based on a machine with 64 GB memory.
In our current implementation of our dual-branch optimiza-
tion, the batch size is 1, and we optimize 16 frames in each
interaction until the entire sequence is optimized. The opti-
mization is completed when the overall loss is convergent,
which typically takes 20 epochs for a single video. We set
the maximum of the number of epochs to be 100.

0.2. More Comparisons and Results
We show more results on in-the-wild videos in Fig. 8 and
Fig. 7. Some of them are samples from the proposed Wild-
CHI dataset. The results demonstrate that our method can
work well on diverse environments even with adverse light-
ing conditions. Although AutoTrackAnything cannot pro-
duce accurate masks for each individual in interactive cases,

Figure 6. Qualitative video on Hi4D dataset. It is an animat-
able figure, which can be viewed with Adobe Acrobat Reader.

Method MPJPE Interaction Joint PA-MPJPE
BUDDI 96.8 102.6 104.3
BUDDI-t 90.3 99.1 98.2
BUDDI-t w/ Appearance 88.1 96.0 96.6
CloseInt 63.1 81.4 72.6
Ours 59.1 80.2 70.2

Table 4. Comparison with temporal baseline methods. BUDDI-
t is a temporal version of BUDDI, which can also be improved by
the proposed appearance loss. Our method can outperform tem-
poral baseline methods due to the proposed proxemic prior and
appearance loss.

we find it is robust to segment all human related pixels from
the image. It is sufficient for our method since we render
two individuals in the same scene and use original RGB im-
ages as a constraint. With this strength, our method can re-
construct interactive humans from outdoor image with com-
plex background and human clothes.

To further compare with optimization-based temporal
frameworks for a fair comparison, we simultaneously opti-
mize BUDDI on the entire sequence with additional tempo-
ral regularization (Eq. 8 in the main paper), which is named
as BUDDI-t. As shown in Tab. 4 and Fig. 7, although the
temporal information can improve BUDDI, our method still
achieves better performance due to the proposed appearance
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Method PA-MPJPE Joint PA-MPJPE
BEV 51.0 96.0
BUDDI 47.5 68.0
Ours 38.6 57.4

Table 5. Quantitative results on CHI3D.

loss and proxemic prior. We also adopt Joint PA-MPJPE
proposed in BUDDI [6] as a metric, and the results in Tab. 4
show that our method is still superior.

In addition, we exclude the training data from CHI3D,
and follow BUDDI to conduct a quantitative comparison
on CHI3D S03. As shown in Tab. 5, our method can also
outperform the baseline methods.

0.3. Abaltion on UV Map Size
We investigate the impact of Gaussian UV map size. Differ-
ent UV map sizes result in different number of Gaussians.
More Gaussians can promote better human appearances. In
Tab. 6, we can find that body poses are worse with a smaller
UV map, which indirectly highlights the importance of ap-
pearance constraint.

0.4. Physical Constraint
Physical constraint can prevent mesh penetrations in the
close interaction. However, we find that it affects the pose
accuracy. The reason is that this constraint introduces more
local minimas and make it more difficult to find the optimal
solution space. Consequently, it is also important for future
works to design an accurate physical constraint that can be
compatible with other constraints.

0.5. Temporal Information vs. Visual Appearance
In previous works [2], temporal information is used to
model close interactions. However, visual appearance is
also important as temporal information alone is not suf-
ficient to address the visual ambiguity. Temporal infor-
mation is effective in preventing high-frequency jittering
(e.g., when the 2D detections or 3D poses in a few non-
consecutive frames are erroneous) and can result in im-
provement on the entire sequence. However, during the
close interaction, incorrect detections always persist for
multiple frames or even throughout the entire interaction
process since existing models (e.g., SAM and ViTPose)
cannot clearly identify human semantics (e.g., 2D keypoints
and mask) in complex interactions. As shown in Fig. 1
of the main paper, the results are still not good despite
the fact that we have already used a temporal version of
SAM [5] (Autotrackanything). Specifically, temporal infor-
mation cannot compensate for a large amount of unreliable
2D detections during the close interaction since human re-
construction methods rely on 2D observations to achieve
model-image alignment. Although the temporal constraint
is applied, BUDDI and CloseInt still overfit to the wrong

2D detections or produce oversmoothing motions during the
close interaction, as shown in Tab. 4 and Fig. 7. In con-
trast, our method avoids 2D detections by modeling 3D ap-
pearance using 3DGS on all original RGB frames, which
provide reliable 2D observations to constrain the interac-
tion. Due to the appearance loss, our method outperforms
the current SOTA temporal method, CloseInt. In addition,
the results in Tab. 4 also demonstrate that the appearance
loss can further improve BUDDI-t on Hi4D dataset.

Although the appearance modeling also relies on tempo-
ral information, the strength of appearance in disentangling
visual ambiguities cannot be achieved by purely temporal
constraints.

0.6. Image Features and 2D Keypoints
Some large-scale datasets (e.g., Inter-X [8] and InterHu-
man [3]) do not contain paired RGB images. To leverage
these datasets for learning the proxemic prior, we can only
project the 3D joints to the image plane and then use the 2D
pose as a condition for the diffusion model. We conduct an
experiment on different conditions of the diffusion model
in Tab. 7. Images contain more information (e.g., body
shape and ordinal relationship) for reconstruction, and the
2D keypoints are not required when RGB images are avail-
able. However, 2D keypoints can help to leverage knowl-
edge from pure 3D datasets. Therefore, we use both these
2D observations as our condition.

0.7. Robustness of appearance loss
The appearance loss does not require high-quality textures,
and it can work as long as the textures of the two humans
are distinguishable as shown in Fig. 9. So, the loss is effec-
tive in most scenarios. However, it may fail when the two
individuals are wearing the similar color clothing. We have
to rely on other constraints (2D keypoints, proxemics, and
temporal information) to achieve the reconstruction in such
special cases. In addition, the complex light-conditions
(e.g., shadows) and cloth deformations can affect the recon-
structed textures as we discussed in the limitation, a light-
and pose-dependent design for the appearance may alleviate
the negative impacts.

0.8. Contact Information
A contact constraint may promote more accurate interac-
tions in our method. However, it is difficult to identify
the contact regions of two closely interactive humans from
monocular RGB images. We do not use contact constraint
since current methods cannot predict reliable contact infor-
mation from in-the-wild videos. As demonstrated in [1],
humans can only achieve 49.9% consistency at 17 regions
partitioning on FlickrCI3D dataset, while the model’s pre-
dictions are even worse, at only 24.8%. Therefore, [1] uses
ground-truth contact annotations during the optimization.



Figure 7. Samples from the proposed WildCHI dataset, which contain complex interactions. BUDDI-t is a temporal version of BUDDI,
which cannot produce satisfatory results on these in-the-wild videos. It is an animatable figure, which can be viewed with Adobe
Acrobat Reader.

RGB Front View Side View RGB Front View Side View

Figure 8. Our method can work well on diverse environments even with adverse lighting conditions.

In contrast, our method leverage appearance and proxemics
information can also obtain satisfactory results.

0.9. Protocol for Dataset Cleaning

Our method cannot guarantee completely satisfactory re-
construction. To ensure the quality of the proposed dataset,
we first evaluate the annotations of the entire sequence with
re-projection error, and then manually check each frame
with the rendered image and a 3D GUI. When the rendered

result or 3D interaction is incorrect, we mark the frame as
invalid. Finally, we select 100 sequences based on motion
diversity and quality, and 96.1% frames are valid, which
demonstrate that our method is relatively robust. The fi-
nal dataset contains different and complex interaction types,
with each sequence performed by different subjects.



RGB Front View Rec. Appearance GT Appearance Side View

Figure 9. Although the reconstructed texture is not good, the appearance loss can work as long as the textures of the two humans are
distinguishable.

Method MPJPE PA-MPJPE MPVPE Interaction A-PD
128 × 128 61.80 46.42 74.89 80.65 0.74
256 × 256 60.64 45.84 73.60 80.02 0.78
512 × 512 59.06 44.29 71.99 80.18 0.81

Table 6. Ablations on UV map size. The ablation is conducted
on Hi4D dataset.

Condition 2D keyp. Image 2D keyp. + Image
Hi4D 71.2 63.1 63.0
Hi4D + Inter-X 66.3 – 62.1

Table 7. Ablation on conditions of diffusion model. 2D
keypoints can help to employ prior knowledge from large-scale
dataset like Inter-X.
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