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A. Limitations

The main limitations of SPAR3D are twofold. First, the

point clouds generated during the point sampling stage oc-

casionally exhibit artifacts, such as small surface spikes or

detached parts. While these imperfections can typically be

remedied through SPAR3D’s editing capabilities with min-

imal effort (see Fig. 7 in the main paper), exploring more

principled solutions (e.g. improving the denoiser design or

diffusion samplers) could further enhance the utility and ro-

bustness of our method.

Second, although SPAR3D learns material decomposi-

tion during training, the accuracy of these decompositions

can sometimes be suboptimal. This limitation is primar-

ily due to the inherent ambiguity of inverse rendering from

a single image, especially when learned in an unsuper-

vised manner. Unsupervised decomposition learning is use-

ful given the scarcity of 3D assets containing high-quality

Physically Based Rendering (PBR) materials and is scalable

to real-world multi-view datasets. However, investigating

semi-supervised learning techniques may offer a pathway

to more plausible material estimations in future work.

B. Additional Implementation Details

Additional Training Details. We use a batch size of 128

for point diffusion, and batch sizes of 168/96 for initial/later

phases of the meshing stage. Our learning rates are 3e-

5 (point) and 5e-5 (meshing) under a cosine decay. We

use a linear learning rate warm-up for 1000 steps, and an

AdamW optimizer with weight decay of 0.05. Training our

2B model takes 10 days on three 8-H100 nodes. Our train-

ing data is the same as TripoSR [56] with additional point

cloud curation steps. Our point clouds are generated by ren-

dering and unprojecting depth maps, which remove the in-

ternal surfaces that can be challenging to learn.

Additional Illustrations of our Architecture. We show

additional illustrations of our point cloud denoiser and our

meshing model in Fig. 9 and Fig. 10. We hope these illus-

trations facilitate a better understanding of our architecture.

C. More Results

Comparison to More Baselines. In Fig. 12, we

show additional qualitative comparison with Era3D and

MeshLRM [64]. We include surface normal renderings for

a better surface visualization. Beyond better texture, our
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Figure 9. Point Cloud Denoiser Architecture. We illustrate the

architecture of our point cloud denoiser. The point cloud denoiser

takes the noisy point cloud and the image as input, and produces

a denoised point cloud. The image and the noisy point cloud are

encoded as latent vectors and concatenated together. The concate-

nated latent vectors are processed by a set of transformer blocks

and decoded as the denoised point cloud.
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Figure 10. Meshing Model Architecture. We illustrate the archi-

tecture of our meshing model, which takes the point cloud and the

image as input, and produces a textured mesh and an environment

map as output. Specifically, the meshing model first encodes the

image and the point cloud as latent vectors. The learnable triplane

tokens are then processed by the triplane transformer conditioned

on the latent vectors. We query the triplane with MLPs to ob-

tain albedo, density, vertex deformation and surface normal, which

are converted to a textured mesh using DMTet. The triplane also

produces an environment map using the illumination prior from

RENI++. The metallic and roughness values are estimated from

the image directly and are omitted here for simplicity.
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Figure 11. Ours w/ DUSt3R. Our robust meshing model can use

point clouds from different sources at higher resolution.

geometry also demonstrates crisp details despite having sig-

nificantly fewer mesh faces than other methods.
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Figure 12. Additional Visual Comparison. The images are from 3D-TopiaXL and MeshLRM demo pages. SPAR3D reconstructions

exhibit significantly better details in both geometry and texture than other methods at a much faster speed.

Input Image SF3D Albedo SPAR3D Albedo SF3D Relight SPAR3D Relight

Figure 13. Decomposition and Relighting Results. We show decomposed albedo and relighting results of SPAR3D in comparison with

SF3D. The albedo estimated by SPAR3D has less baked-in lighting compared with SF3D and results in better relighting outcomes.
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Figure 14. Additional In-the-wild Results. We show additional results of SPAR3D on in-the-wild images. The reconstructed meshes

achieve high fidelity and exhibit great surface details.

Inference with Other Point Clouds. SPAR3D is not

restricted to its own generated points, and we find our

point conditioner relatively robust to different resolutions.

In Fig. 11, we show a qualitative example of feeding a

DUSt3R [62] point cloud (10K sampled points) to our

meshing model. We observe our model still produces high-

quality reconstructions.

Decomposition Results. We show decomposition and re-

lighting results of SPAR3D in comparison with SF3D,

which is a full regressive method. As shown in Fig. 13,

our estimated albedo often has less baked-in lighting arti-

facts compared with SF3D, which improves the quality of

relighting under different illumination conditions.



Meshing Stage Ablation. To better understand the effect

of point cloud conditioning, we evaluate the meshing stage

with groundtruth point clouds on GSO. This leads to a CD

of 0.070 (vs. 0.120 original) and a PSNR of 20.4 (vs. 18.6

original). The performance improvement with oracle fur-

ther verifies our hypothesis that even sparse point clouds

effectively reduce reconstruction ambiguity.

Additional In-the-wild Results. We present additional

reconstruction results on in-the-wild images. In Fig. 14,

we show the reconstructions of SPAR3D on images from

3D-Arena (Ebert, 2024). On this data source, SPAR3D also

achieves high reconstruction quality. This further validates

the strong generalization ability of SPAR3D.


