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7. Pseudo-code for SAM2 Iterative Prompting
We present the pseudo-code for the first stage of SAM2 It-
erative Prompting in Algorithm 1. The first stage focuses
on grouping trajectories belonging to the same object and
storing the trajectories of each distinct object in memory.
Algorithm 1 Process Invisible Trajectory with Memory

1: Initialize iteration to 0
2: Initialize memory dict as an empty dictionary
3: Set take all to False
4: if traj.shape[1] ≤ 5 then
5: Set take all to True
6: end if
7: while iteration < max iterations do
8: Set t to frame with maximum visible points
9: Extract visible points at frame t

10: Find densest point as nearest point
11: Reset predictor state and add new point
12: Reset predictor state
13: Set obj id to 1 and labels to [1]
14: Add new point using predictor to get mask
15: Dilate the mask and determine points within the

mask: dilated mask
16: Determine points in prompt mask (visible + non-

dilated): prompt mask
17: if sufficient points in mask or take all is True then
18: Increment valid obj id
19: Store object information in memory dict
20: end if
21: Remove points included in the mask from traj,

visiblemask, and confidences
22: Update traj, visiblemask, and confidences with

remaining points
23: Increment iteration by 1
24: if traj.shape[1] < 6 then
25: Break the loop
26: end if
27: end while
28: return memory dict

8. Additional Experiment Details
Training Details. We train the model for 5 epochs, with
each epoch comprising approximately 8000 steps, using the
Adam optimizer with a learning rate of 1e-4 and a weight
decay of 1e-4.

Model Architecture. As shown in the Fig 9, for the tra-
jectory motion pattern encoder, we employ 4 heads for

multi-head attention and a 64-dimensional feed-forward
layer. For the tracks decoder, we use 8 heads for multi-head
attention and a 512-dimensional feed-forward layer.
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Figure 9. Architecture of tracks decoder.

Model efficiency and details. We parallelized the code
during data processing. For a 50-frame video, process-
ing takes 2 minutes, model inference 3 seconds, and object
prompt generation requires 2 seconds per object only. For
a dynamic object, 1-2 iterations are usually required. And
the experimental settings are discussed in Sec 4.1 and Sec
7. Training time is about 60 hours, and the hardware used
for training is an NVIDIA RTX A6000.

Point Trajectory. We utilize BootsTAP [15] to generate
2D tracks for query frames in video sequences. Specif-
ically, query frames are selected at intervals defined by
step, and 2D tracks are generated only for these frames.
For training datasets, grid size specifies the sampling
grid resolution, determining the spacing between sampled
points, while step controls the temporal interval between
query frames. During training, we randomly select one
query frame and load all its associated tracks to acceler-
ate the process. For the Kubric dataset with a resolution of
512×512, we set grid size to 8, generating 4096 points
per frame, and step to 8, with the total number of tracks
randomly sampled from [512, 1024, 2048, 3000, 4096]. For
the HOI4D dataset with a resolution of 1920 × 1080,
we set grid size to 15, generating 9216 points per
frame, and step to 15, with total tracks number sampled
from [1024, 1536, 2048, 4096, 5000, 6000]. For the Stereo
dataset with a resolution of 1280×720, we set grid size
to 32, generating 920 points per frame, and step to 8, with
track counts sampled from [256, 512, 768, 920]. During in-
ference, 2D tracks are also generated for each query frame.
To ensure that dynamic objects appearing at different times
are fully captured, tracks from all query frames are loaded,
and 5000 tracks are randomly selected. For the FBMS-59
dataset [41], we set grid size to 7 and step to 30, be-
cause some datasets contain relatively long sequences, we
select a larger step to accelerate the loading process. For
SegTrack V2 [33], grid size is set to 5 and step to 8.
For DAVIS-16 [45] and DAVIS-17 [46], grid size is set
to 10 and step to 8.
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Figure 10. Our method demonstrates exceptional capability in generating fine-grained masks. Most previous approaches rely on the
common fate assumption, where objects moving at the same speed are considered part of the same entity. Moreover, many methods lack
the ability to produce fine-grained masks altogether. In contrast, our method can accurately distinguish and segment individual objects,
even when they are closely positioned, moving simultaneously, or traveling at the same speed.

Failure case. We perform well on most sequences, but
struggle on cases like the “penguin” in SegTrackv2 (Fig 11),
where 90% of the content has similar motion. The lack of
contrast and uniform motion patterns can cause the model
to misinterpret object motion as camera motion, leading to
a J metric of 0.014. Since SAM2 requires prompts, any fail-
ure in this process results in near-zero scores, whereas the
baseline still achieves the 30-50 range even when it fails.

Figure 11. From left to right: input, dynamic tracks and mask.

9. Additional Experiments
Comparison with FlowSAM [60]. We further included
a new baseline experiment (see Tab. 4) to demonstrate the
superior performance of our model. It is worth noting that
among all the baselines, only our method and FlowSAM

Methods Supervision Davis16-m Davis16
J ↑ F ↑ J ↑ F ↑

FlowSAM YES 85.7 83.8 87.1 84.9
Ours YES 89.2 89.7 90.6 91.0

Table 4. Comparison with FlowSAM on MOS task.
require human annotation—our method needs human anno-
tation during training, but not during inference.

10. Additional Visualizations
We present additional visualizations on the three main
datasets that we benchmark our method on [34, 36, 58, 59,
67]. We visualize our methods on DAVIS2016 in Fig. 12,
Fig. 13 on the task of moving object segmentation. And
Fig. 10 shows the result of fine-grained moving object seg-
mentation on DAVIS2017.

Additionally, we provide a video demonstration featur-
ing featuring non-cherry-picked examples from DAVIS16-
Moving, showcasing both long-range trajectory label pre-
dictions and the final mask results.
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Figure 12. Our method effectively preserves the geometric integrity of articulated objects, such as human legs or camel limbs. At the
same time, it can distinguish between dynamic backgrounds and foregrounds, focusing specifically on the object level. Additionally, it
accurately identifies camouflage-like textures, such as a camel’s head blending with the wooden fence in the background.
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Figure 13. Our method handles occlusion scenarios more effectively. Thanks to long-range tracks, we can accurately follow a boy
temporarily obscured by trees. Furthermore, our approach addresses complex situations, such as transparent glass, by including it in the
mask to ensure the completeness of the moving object mask. Additionally, for highly intricate reflections, such as vehicle shadows, our
method can accurately exclude them.
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