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Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline

Supplementary Material

6. Supplementary679

We propose a straightforward and effective pipeline for fine-680
grained video anomaly detection. The core approach con-681
sists of two key steps: 1) generating anomaly prompts based682
on object detection results from video sequences and re-683
fining these prompts using a robust filtering algorithm; 2)684
applying a prompt-based segmentation model to produce685
accurate pixel-level anomaly masks. This pipeline enables686
efficient identification and segmentation of anomalous ob-687
jects, significantly improving detection precision and tem-688
poral consistency. In the supplementary materials, we pro-689
vide additional details on the following aspects:690

• We offer a more comprehensive explanation of the im-691
plementation process for anomalous boxes extraction and692
SAM2 segmentation inference in Sec. 6.1.693

• We provide a detailed explanation of the object-level694
evaluation metrics utilized in our experiments, empha-695
sizing their importance in assessing spatial and temporal696
anomaly detection performance in Sec. 6.2.697

• We analyze the limitations of our proposed model and698
existing baselines, highlighting potential avenues for im-699
provement in Sec. 6.3.700

• we present additional experimental visualization results,701
highlighting the instance segmentation performance of702
our model, including examples from the ShanghaiTech703
Campus dataset in Sec. 6.4.704

6.1. Comprehensive Implementation Details705

Details of Anomalous Boxes Extraction. Our object-level706
VAD algorithm [27] utilizes features such as speed, pose,707
and depth to detect anomalies. During the training phase,708
a probabilistic density model, such as k-nearest neighbors709
or Mahalanobis distance, is constructed based on normal710
behavioral attributes. In the testing phase, the probability711
density of each object’s features is calculated, where lower712
density values indicate greater deviation from normal be-713
havior, resulting in higher anomaly scores. For the test data,714
only speed and depth features are used to compute anomaly715
scores. These scores are then standardized using the corre-716
sponding speed and depth anomaly scores from the training717
data, enhancing the prominence of anomalous objects and718
making them easier to detect. The standardized speed and719
depth anomaly scores are subsequently summed to produce720
a final overall anomaly score. A threshold is applied to this721
score to effectively filter and identify anomalous objects and722
their corresponding bounding boxes.723

To address overlapping anomaly boxes that may corre-724
spond to the same anomalous object, we calculate the Inter-725

section over Union (IoU) for each pair of filtered boxes Bi 726
and Bj within the same frame. The IoU is computed as the 727
ratio of the intersection area to the union area between two 728
boxes, defined as: 729

IoU(Bi, Bj) =
Area(Bi ∩Bj)

Area(Bi ∪Bj)
. 730

If the IoU exceeds a threshold of τ = 0.3, the two boxes are 731
deemed to represent the same anomalous object. In such 732
cases, a new box Bnew is created by merging the two, with 733
its top-left corner coordinates given by min(xmin

i , xmin
j ) and 734

min(ymin
i , ymin

j ), and its bottom-right corner coordinates de- 735
termined as max(xmax

i , xmax
j ) and max(ymax

i , ymax
j ). This 736

merging process consolidates overlapping boxes into a sin- 737
gle bounding box that accurately represents the anomalous 738
object. By iteratively applying this procedure across all 739
frames, the algorithm ensures a non-redundant and consis- 740
tent representation of anomalies, improving the overall ac- 741
curacy and reliability of localization. 742
Details of Segmentation Model Inference. We utilize 743
SAM2 as the prompt-based segmentation model to per- 744
form instance segmentation for distinct anomalous objects 745
in video clips. This process involves generating prompts 746
for each object using a robust bounding box filtering al- 747
gorithm, applied at fixed frame intervals. Each prompt is 748
stored as a tuple Tbox = (fi, bj ,Lj), where fi represents the 749
frame, bj is the bounding box, and Lj is the correspond- 750
ing object label. These tuples ensure consistent and accu- 751
rate tracking of anomalous objects across frames, maintain- 752
ing both spatial and temporal coherence. By consolidat- 753
ing bounding boxes and their associated labels into struc- 754
tured prompts, the model effectively localizes and segments 755
anomalies within dynamic video contexts. Instance seg- 756
mentation in SAM2 is performed by providing the corre- 757
sponding object labels and bounding box prompts as inputs. 758
The resulting segmentation outputs are processed to serve 759
different evaluation purposes. For pixel-level metrics, the 760
instance segmentation results are transformed into binarized 761
segmentation masks that highlight anomalous regions at the 762
pixel level. For object-level metrics, each instance segmen- 763
tation result is converted into a bounding box that encapsu- 764
lates the segmented object. This dual-processing approach 765
allows for comprehensive evaluation of both fine-grained 766
anomaly localization and high-level object tracking, ensur- 767
ing the robustness and accuracy of the proposed method. 768

6.2. Object-Level Evaluation Metrics 769

RBDC. The Region-Based Detection Criterion (RBDC) 770
evaluates the spatial accuracy of anomaly detection by 771
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quantifying the proportion of correctly matched predicted772
regions relative to the ground truth regions. For a predicted773
bounding box Bpred and a ground truth box Bgt, the Inter-774
section over Union (IoU) is computed as:775

IoU =
Area(Bpred ∩Bgt)

Area(Bpred ∪Bgt)
.776

A match is deemed correct if IoU > α, where α is a prede-777
fined threshold (e.g., α = 0.1). The RBDC score is defined778
as:779

RBDC =
Number of Correctly Matched Regions
Total Number of Ground Truth Regions

.780

RBDC is essential for assessing spatial precision, ensuring781
that detected anomalies accurately align with ground truth782
regions, particularly in scenarios with complex or overlap-783
ping anomalies.784
TBDC. The Track-Based Detection Criterion (TBDC) eval-785
uates the temporal consistency of anomaly detection by786
measuring the proportion of correctly tracked anomaly tra-787
jectories relative to the total number of ground truth tracks.788
A trajectory is considered correctly tracked if the IoU be-789
tween the predicted bounding box and the ground truth box790
exceeds the threshold α in each frame of the track. The791
TBDC score is calculated as:792

TBDC =
Number of Correctly Tracked Anomaly Tracks

Total Number of Ground Truth Tracks
.793

TBDC is critical for evaluating temporal robustness, cap-794
turing the model’s ability to maintain consistent anomaly795
detection across consecutive frames, which is particularly796
important in dynamic video scenarios.797

Together, RBDC and TBDC provide a comprehensive798
framework for evaluating object-level anomaly detection,799
addressing both spatial precision and temporal coherence.800
These metrics are particularly well-suited for real-world ap-801
plications such as surveillance and autonomous systems,802
where accurate spatial localization and robust temporal803
tracking are paramount.804

6.3. Limitations and Future Directions805

Limitations. The performance of our model is closely tied806
to the robustness of the prompts provided to the prompt-807
based segmentation model, such as SAM2. These prompts808
heavily rely on the effectiveness of the object-level anomaly809
detection algorithm in assigning accurate anomaly scores to810
objects within anomalous frames. A precise anomaly detec-811
tion algorithm that effectively distinguishes between normal812
and anomalous objects generates higher-quality prompts,813
resulting in improved segmentation accuracy. However,814
false-positive prompts pose significant challenges. First,815
they can introduce cumulative tracking errors in SAM2,816

leading to catastrophic forgetting of actual anomalous ob- 817
jects. As these errors propagate across frames, the model 818
may progressively lose its ability to detect critical anoma- 819
lies, severely undermining its reliability. Second, false- 820
positive prompts increase the computational burden dur- 821
ing SAM2 inference. By prompting the model to pro- 822
cess non-anomalous objects, they degrade inference effi- 823
ciency, resulting in slower processing times and unneces- 824
sary computational overhead. Addressing these issues is 825
essential to ensure both the accuracy and efficiency of the 826
proposed framework. This underscores the need to enhance 827
the anomaly detection algorithm’s precision and robustness, 828
thereby minimizing the impact of false-positive prompts 829
and maximizing the overall performance of the system. 830
Future Directions. Existing video anomaly detection 831
datasets primarily focus on frame-level and object-level 832
anomalies, with pixel-level annotations being extremely 833
limited. Among the few datasets that provide pixel-level 834
annotations, these are often coarse, offering only rough out- 835
lines of anomalous objects rather than precise contours. Ad- 836
ditionally, current pixel-level annotations are predominantly 837
binary masks, which pose significant challenges in scenar- 838
ios where anomalous objects overlap, as binary masks fail to 839
differentiate between overlapping objects, making accurate 840
evaluation difficult. To address these limitations, we pro- 841
pose adopting instance-level pixel annotations for anoma- 842
lous objects. Instance-level annotations would uniquely 843
identify each anomalous object at the pixel level, even in 844
complex scenarios involving overlapping objects. This ap- 845
proach would enhance the precision of pixel-level anomaly 846
detection and enable more granular evaluations in video 847
anomaly detection tasks. Furthermore, the adoption of 848
instance-level pixel annotations would support the develop- 849
ment of more robust algorithms capable of handling real- 850
world scenarios, where anomalies often appear in complex 851
and overlapping forms. By bridging the gap in current 852
datasets, instance-level annotations could serve as a criti- 853
cal foundation for advancing video anomaly detection and 854
promoting consistent benchmarking across future methods. 855

6.4. More Visualization about Experiments 856

We provide additional visualization results from compara- 857
tive experiments, showcasing detailed visual comparisons 858
between our method and four baselines—SimpleNet [17], 859
DRAEM [36], DDAD [21], and AnomalyCLIP [38]—on 860
three selected video clips from the UCSD Ped2 dataset (see 861
Fig. 7–9). Binary segmentation masks are employed for 862
consistency and clarity, and the results clearly demonstrate 863
that our model significantly outperforms the baseline meth- 864
ods. Additionally, we present instance segmentation results 865
of our model on the ShanghaiTech Campus dataset, further 866
illustrating its effectiveness and robustness in segmenting 867
anomalous objects at the instance level (see Fig. 10). 868
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Figure 7. Visual comparisons on the UCSD Ped2 dataset. Red masks represent the binary segmentation results.
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Figure 8. Visual comparisons on the UCSD Ped2 dataset. Red masks represent the binary segmentation results.
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Figure 9. Visual comparisons on the UCSD Ped2 dataset. Red masks represent the binary segmentation results.
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Figure 10. Instance segmentation visualization results on the ShanghaiTech Campus dataset. Masks in different colors represent the
segmentation results for distinct instances.

t

5




