
A. Annotation Tool

We set up an interactive annotation tool for data collection
based on SQA3D [14]. We present a visualization of the
user interface (UI) in Fig. A.1, including a 3D scene viewer
(left), an annotation editor (middle), and object information
(right). There are three Grounding-Chains (G-Chains) and
three Grounding-QA-Chains (GQA-Chains) to be annotated
in the annotation editor for each target object.

Two panels on the right exhibit details of each annotation:
- For the grounding task, the human annotator is supposed

to fill the referential text with precise and natural language,
and then select the involved knowledge types and a list of
objects that match the referential text.

- For the question answering (QA) task, the human anno-
tator first generates a QA pair based on the “grounding
text”, which lists three primary grounding texts from the
G-Chains. Then, the annotator labels the knowledge type
and the flag of extra knowledge, e.g., “no” if the answer is
covered by the “grounding text”.

B. Baselines

ViL3DRel [4]. This is a 3D vision-language (3D-VL) spe-
cialist model for grounding, trained in a single-task scheme.
We use the official checkpoint trained on ScanRefer [3].

3D-VisTA [23]. While 3D-VisTA adopts task-specific fine-
tuning for downstream tasks by default, we perform multi-
task training by aggregating the datasets it uses. The datasets
for grounding include ScanRefer, Nr3D [1], Sr3D [1], and
Multi3DRefer [21]. The datasets for QA include ScanQA
[2] and SQA3D [14].

PQ3D [24]. PQ3D is a 3D-VL generalist model that sup-
ports both grounding and QA tasks. We directly use the
checkpoint after pretraining and multi-task training. The
training datasets include Scan2Cap [5] in addition to the
datasets for 3D-VisTA.

SceneVerse [12]. SceneVerse is a 3D-VL model pretrained
on large-scale grounding datasets. To make it a general-
ist model for grounding and QA, we finetune a QA head
while freezing the pretrained backbone weights to preserve
its grounding ability. The datasets for fine-tuning include
ScanQA and SQA3D.

GPT-4o [16]. As a state-of-the-art large language model
(LLM), GPT-4o is selected as a specialist model for QA to
probe the upper bound of LLMs. We adopted the evaluation
pipeline outlined in [13] to assess GPT-4o’s performance. In
our evaluation, we prompt GPT-4o to answer the questions

based on a collection of objects, which comprises the cate-
gory, location, size, and attributes of each object. The object
attributes are extracted with GPT-4V [16].

LEO-multi. To address the lack of grounding capability
in LEO [11], we design a grounding loss alongside the orig-
inal autoregressive language modeling loss. The ground-
ing loss resembles contrastive learning (CLIP [17]) on the
alignment between object tokens (the input to LLM) and
text embeddings. With the multi-task objective, we train
LEO-multi by combining grounding (ScanRefer and Nr3D)
with instruction-tuning tasks (ScanQA, SQA3D, 3RScan-QA
[11], 3RScan-Plan [11], and 3RScan-Dialog [11]).

LEO-curricular. Similar to LEO-multi, LEO-curricular
incorporates the contrastive grounding loss but learns ground-
ing and QA in a curricular strategy. We first train the 3D
encoder of LEO-curricular with grounding loss on ScanRe-
fer and Nr3D. We then freeze the 3D encoder and finetune
the LLM with LoRA [9] on instruction-tuning datasets.

PQ3D-LLM. This is a model variant based on PQ3D,
substituting the original T5-Small [18] with Vicuna-7B [6],
which is finetuned with LoRA. The training setting is identi-
cal to PQ3D.

Chat-Scene [10]. Chat-Scene is designed to be a 3D-VL
generalist model, using object identifiers and LLM to per-
form grounding. The training datasets include ScanRefer,
Multi3DRefer, Scan2Cap, ScanQA, and SQA3D. We di-
rectly use its released checkpoint for evaluation.

C. Additional Analyses
C.1. Outliers and Prospective Questions

We observe several outliers in our evaluation results. Below,
we address these outliers and answer prospective questions:

Poor grounding for LEO-multi and LEO-curricular. The
grounding performance of these two models falls signifi-
cantly below that of others. We attribute this to our imple-
mentation of the grounding task learning, which employs
contrastive learning between object tokens and text embed-
dings of pretrained LLM (e.g., Vicuna). We receive two
lessons from this: (1) contrastive learning demands large-
scale data while the scarce 3D-VL data proves insufficient;
and (2) unlike CLIP, the text embeddings of pretrained LLM
may not be suitable for contrastive learning.

Poor QA for PQ3D and PQ3D-LLM. Despite the strong
performance in grounding for these two models, their perfor-
mance in QA is notably weak. We attribute this to the choice
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Figure A.1. Overview of our annotation tool. The interface includes a 3D viewer (left), an annotation editor (middle), and object
information (right). Two panels on the right exhibit details of each annotation for the grounding and QA task, respectively.

of language encoder. Compared to 3D-VisTA, PQ3D adopts
a similar overall architecture but differs in language encoder:
3D-VisTA uses BERT [8], whereas PQ3D uses CLIP. The
reasonable QA performance of 3D-VisTA indicates that the
CLIP language encoder is suboptimal for QA task, despite
being adequate for grounding. This further underscores the
linguistic gap between grounding and QA tasks: ground-
ing texts encompass descriptive language while questions
involve diverse querying patterns. It reveals the limitations
of the CLIP language encoder in addressing this disparity.

Why is PQ3D-LLM worse than PQ3D in grounding?
While the LLM incorporated by PQ3D-LLM is only used for
QA, it introduces a significant number of extra parameters
for optimization, which may hinder the learning of ground-
ing during multi-task learning and consequently weaken the
grounding performance.

Why is PQ3D-LLM not better than PQ3D in QA? In
PQ3D, the input to the QA head (e.g., LLM) only comprises
object tokens, which can be regarded as foreign language for
LLM. The challenge of utilizing these tokens for QA cannot
be alleviated by incorporating LLM, despite its strength in
language processing. Additionally, incorporating LLM for
QA is prone to overfitting given the scarcity of 3D QA data.

Strong performance of GPT-4o in QA. We observe that
GPT-4o significantly outperforms 3D-VL models in QA,
especially in questions related to appearance (App.) and
existence (Exi.). This showcases the upper bound of using
explicit textual information (e.g., object lists with attributes),

which bypasses 3D perception. The considerable gap be-
tween GPT-4o and 3D-VL models further suggests that 3D
perception remains a key bottleneck in 3D-VL models.

C.2. Discussion on the Effect of LLM

LLM hinders grounding. This conclusion is drawn from
the consideration of two categories of models:
- LLM directly used for grounding. Models that perform

grounding based on LLM (e.g., Chat-Scene) exhibit less
robust performance compared to models without LLM.
Specifically, despite the close performances on ScanRefer,
Chat-Scene lags behind PQ3D and SceneVerse on BEA-
CON3D, which implies the potential risk of overfitting for
LLM-based grounding. However, LLM may be beneficial
in more complex grounding tasks that require high-level
reasoning or planning, e.g., sequential grounding [22].
This suggests that the effect of LLM-based grounding
varies according to task complexity.

- LLM not directly used for grounding. In models that do
not rely on LLM for grounding (e.g., PQ3D-LLM), we
observe a weaker performance in grounding after incor-
porating LLM. This shows the negative effect of LLM’s
parameters on the learning of grounding during multi-task
learning. A practical solution is to decompose multi-task
learning into curricular learning, which disregards LLM’s
parameters during the learning of grounding.

LLM does not truly improve QA. We elaborate on this
conclusion from three aspects: clarification on how we draw
the conclusion, explanation on why per-case metrics do not
matter, and analysis on why LLM may not help 3D QA.



Table A.1. Evaluation results of grounding on BEACON3D
(3RScan). The settings and metrics follow the main paper. ∗∗

denotes models that have never been trained in 3RScan. ∗ denotes
models that have been trained in 3RScan but not on grounding. ‡

denotes only point feature is available.

Knowledge type Overall

Class App. Geo. Spa. Case Obj.

w/o LLM
ViL3DRel∗∗ [4] 41.5 44.9 37.4 37.3 41.5 18.4
3D-VisTA∗∗ [23] 45.6 38.3 37.4 40.9 45.6 21.7
PQ3D∗∗‡ [24] 38.3 28.0 36.4 35.3 38.3 13.6
SceneVerse [12] 61.8 51.4 53.3 57.3 61.8 37.5

LLM-based
LEO-multi∗ 10.1 9.9 9.7 8.8 10.1 0.4
LEO-curricular∗ 15.3 17.7 11.8 9.3 15.3 1.1
PQ3D-LLM∗∗‡ 30.3 27.6 24.6 25.5 30.3 8.5

Table A.2. Evaluation results of QA on BEACON3D (3RScan). †

indicates text input (i.e., object locations and attributes) instead of 3D
point cloud. ∗∗ denotes models that have never trained in 3RScan. ∗

denotes models that have been trained in 3RScan but not on QA. ‡

denotes only point feature is available.

Knowledge type Overall

Class App. Geo. Spa. Exi. Case Obj.

w/o LLM
3D-VisTA∗∗ [23] 15.2 24.1 28.2 25.3 28.9 25.7 3.3
PQ3D∗∗‡ [24] 6.5 19.6 13.6 16.6 52.6 25.7 0.7
SceneVerse∗ [12] 28.3 32.3 34.6 38.9 44.6 37.4 0.4

LLM-based
GPT-4o† [16] 34.8 38.2 40.0 45.4 60.7 46.1 11.0
LEO-multi 37.0 35.0 51.8 48.5 46.5 44.1 1.8
LEO-curricular 19.6 41.8 48.2 48.5 50.7 45.6 7.4
PQ3D-LLM∗∗‡ 13.0 21.4 17.3 21.4 33.2 23.4 1.8

- How we draw the conclusion. The evidence mainly comes
from two observations: (1) the results of LLM-based mod-
els are comparable to those without LLM under object-
centric metrics; and (2) fragile grounding-QA coherence.

- Why per-case metrics do not matter. While LLM-based
models show slightly better results in per-case metrics,
these metrics do not reliably indicate true 3D QA capa-
bility. As demonstrated in the main paper, per-case met-
rics are not robust enough due to their vulnerability to
shortcuts. Moreover, the advantage of LLM-based models
in per-case metrics is marginal, which is intuitive given
LLM’s strength in general QA. We believe the marginal
gap in per-case metrics cannot evidence a gap in the true
capability of 3D QA.

- Why LLM may not help 3D QA. We conjecture the bot-
tleneck in 3D QA lies in the alignment between 3D fea-
tures and QA modules, rather than language generation,
where the primary strength of LLM resides. Prior works
[12, 23, 24] have shown that simple QA heads (e.g., T5-
Small or MCAN [20]) perform well in 3D QA, as the task
demands only a basic level of language generation. This
explains the minimal contribution of LLM to 3D QA.

Harnessing LLM for 3D-VL tasks. We first identify a
critical problem in current 3D large vision-language models
(LVLMs) and then propose an effective solution to harness
LLM for 3D-VL tasks.
- Problem. Our investigation in the main paper reveals

that overfitting to text is a critical problem in current 3D
LVLMs. This implies a significant imbalance between 3D
encoder and LLM, that is, LLM often overshadows 3D en-
coder during training. This issue is less pronounced in 2D
LVLMs owing to the robust 2D features learned through
extensive pretraining, which is infeasible for 3D encoders.

- Solution. We propose curricular learning, progressing

from grounding to QA, as an effective solution to mitigate
this issue by shielding 3D features from LLM interfer-
ence. The effectiveness is evidenced by the advantages of
SceneVerse and LEO-curricular.

C.3. Limitations and Future Work

First, our benchmark prioritizes focused and systematic anal-
ysis, which involves trade-offs in task scope and complexity.
Our object-centric evaluation excludes more advanced tasks,
such as multi-object grounding and complex reasoning. Ex-
tending this evaluation framework to include more complex
tasks will be a key direction for future work. Second, our
baselines may not cover the wide range of existing 3D-VL
models. We will evaluate and analyze more models in the
future. Third, we consider the performance of the grounding
task as a proxy for the grounding implicitly performed in the
QA task. This may be unfair to models whose grounding
performance is locked due to issues like improper imple-
mentation (e.g., LEO-multi and LEO-curricular). Nonethe-
less, we believe our approach remains practical for assessing
grounding-QA coherence in most 3D-VL generalist models.

D. Domain Transfer

We follow the setting outlined in the main paper to evalu-
ate the baselines in two novel domains: 3RScan [19] and
MultiScan [15]. This evaluation is referred to as domain
transfer since most baselines are only trained on ScanNet
[7]. Notably, as Chat-Scene only provides model features
for ScanNet, its evaluation on 3RScan and MultiScan is
not feasible. We distinguish between two types of domain
transfer:
- ∗∗: the model has never been trained in the target domain.
- ∗: the model has been trained in the target domain but on

tasks other than the specific one.



Table A.3. Evaluation results of grounding on BEACON3D
(MultiScan). The settings and metrics follow the main paper. ∗∗

denotes models that have never been trained in MultiScan. Only
SceneVerse has been trained in MultiScan.

Knowledge type Overall

Class App. Geo. Spa. Case Obj.

w/o LLM
ViL3DRel∗∗ [4] 33.2 34.4 25.0 32.0 33.2 13.2
3D-VisTA∗∗ [23] 40.8 30.5 28.1 38.0 40.8 18.9
PQ3D∗∗ [24] 56.3 53.9 37.5 52.8 56.3 34.0
SceneVerse [12] 59.5 54.6 53.1 56.6 59.5 35.9

LLM-based
LEO-multi∗∗ 9.0 9.1 9.4 9.0 9.0 1.3
LEO-curricular∗∗ 11.7 11.0 6.3 9.0 11.7 0
PQ3D-LLM∗∗ 51.0 46.8 37.5 49.0 51.0 25.8

Table A.4. Evaluation results of QA on BEACON3D (MultiScan). †

indicates text input (i.e., object locations and attributes) instead of 3D
point cloud. ∗∗ denotes models that have never been trained in MultiScan.
∗ denotes models that have been trained in MultiScan but not on QA.

Knowledge type Overall

Class App. Geo. Spa. Exi. Case Obj.

w/o LLM
3D-VisTA∗∗ [23] 6.5 22.6 16.7 13.2 28.8 19.1 0
PQ3D∗∗ [24] 21.0 16.8 16.7 9.6 39.0 20.8 0.6
SceneVerse∗ [12] 16.2 32.1 12.5 26.5 38.1 28.9 3.1

LLM-based
GPT-4o† [16] 29.0 41.6 33.3 25.7 59.3 39.4 7.6
LEO-multi∗∗ 12.9 24.1 41.7 24.3 32.2 25.6 2.5
LEO-curricular∗∗ 8.1 27.0 50.0 28.7 41.5 29.8 3.8
PQ3D-LLM∗∗ 6.5 21.9 8.3 11.0 25.4 17.0 0.6

Results. We present the domain transfer results for 3RScan
in Tabs. A.1 and A.2, and MultiScan in Tabs. A.3 and A.4.
The overall trends are consistent with those reported in the
main paper for ScanNet. For example, while models without
LLM (e.g., SceneVerse) excel in grounding, LLM-based
models (e.g., LEO-curricular) perform better under per-case
metrics but struggle with object-centric metrics in QA. In
particular, we report several specific findings regarding the
domain transfer results:
- Challenge of domain transfer. All models exhibit no-

table performance declines, emphasizing the challenge of
domain transfer (ScanNet → 3RScan; MultiScan). Scen-
eVerse surpasses PQ3D owing to its comprehensive pre-
training across diverse scene domains. Moreover, training
on 3RScan-QA improves QA performance on 3RScan
(LEO-multi and LEO-curricular). These findings highlight
the inevitable domain gap and the benefits of cross-domain
pretraining.

- Limitations of feature-dependent models. PQ3D and
PQ3D-LLM experience considerable performance drops
on 3RScan due to a lack of image and voxel features.
While this issue results in only a marginal drop on Scan-
Net, as reported in the original paper [24], the consider-
able drop on 3RScan indicates the heightened challenges
of transferring to novel domains for feature-dependent
models such as PQ3D and Chat-Scene.

- More challenging 3D perception in MultiScan. Perfor-
mance on MultiScan is consistently lower than on 3RScan,
reflecting the increased difficulty of 3D perception in the
domain of MultiScan. SceneVerse, despite using a simple
QA head [20], outperforms LEO-multi and matches LEO-
curricular. This suggests that the bottleneck in QA lies
in 3D perception, suppressing the contribution of LLM.
It further underscores the need for more powerful 3D en-
coders to address this bottleneck.

- Performance degradation of GPT-4o. GPT-4o exhibits
noticeably lower performance on 3RScan and MultiScan

compared to ScanNet, with the results on 3RScan ap-
proached by LEO-curricular. We attribute this degradation
to incomplete object attributes stemming from insufficient
multi-view images, which limits the object attribute extrac-
tion by GPT-4V. This reveals that, despite their strengths
in 3D QA, LLMs and 2D LVLM are constrained by the
availability of high-quality multi-view images.

E. Illustration of Data and Evaluation

We present a video demo to illustrate the process of data
collection and evaluation (see attachment). Here we show
the static overview in Fig. A.2 and A.3.
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