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Supplementary Material

1. Additional Details of V2X-R Dataset

Here we will introduce some additional details about our
V2X-R dataset, to help researchers using the V2X-R dataset
get started quickly.

1.1. Calibration of sensors

We provide calibration information for each sensor (Li-
DAR, 4D radar, camera) of each agent for inter-sensor fu-
sion. In particular, the exported 4D radar point cloud has
been converted to the LiDAR coordinate system of the cor-
responding agent in advance to facilitate fusion, so the 4D
radar point cloud is referenced to the LiDAR coordinate
system. If necessary, it can be converted back by the Li-
DAR coordinate system to the 4D radar coordinate system.

Sensor Data Structure File Type Attributes

LiDAR Point Cloud .pcd N × 4
[x, y, z, intensity]

4D Radar Point Cloud .pcd N × 4
[x, y, z, velocity]

Camera Image .png 800× 600× 3
[R,G,B]

Table 1. The detailed information of V2X-R data.

1.2. Information of data

The data attributes corresponding to LiDAR, 4D radar, and
camera are shown in Table 1. Both LiDAR and 4D radar
sensors provide N × 4 point clouds, where N represents
the number of points. It is worth noting that the 4D radar

was originally exported in the CARLA simulator as an array
of [azimuth, altitude, depth, velocity] in polar coordinates,
which we converted to a Cartesian coordinate system. In
addition, an 800x600x3 RGB image is obtained for each of
the 4 cameras of each agent.

1.3. Information of data collection

We saved the critical collection details of each scene se-
quence by splits (can be found in ”data protocol.yaml” of
the released dataset), which includes agent information and
scene sources for each sequence. Additional detailed acqui-
sition information, such as the configuration of each agent’s
trajectory, can be queried in our V2X-R documentation.

2. Additional Results Analysis

Modality
Communication volumes (4B as unit, log-scale)/

Latency time (ms as unit, 27Mbps as transmission speed)
AttFuse V2XViT CoBEVT SICP L4DR

LiDAR-based 18.2/357.7 16.0/75.2 17.6/226.1 14.9/35.2 -
4D radar-based 14.6/28.4 14.0/18.6 15.0/37.4 13.6/14.7 -

LiDAR+4D radar 18.4/402.1 16.9/142.0 18.1/317.6 15.2/42.7 17.7/253.1

Table 2. Analysis of Communication Costs and Bandwidth for
Different Models (SM2MM,SA2MA).

2.1. Transmission cost and bandwidth.

We have calculated transmission cost (count of non-zero el-
ements in the feature map) and latency for different modal-
ities. As shown in Table 2, 4D radar has the advantage
of sparse feature transmission, and its fusion with LiDAR
brings acceptable transmission cost and latency time.

Std of localization error (m)/(Val-AP@50)Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6
AttFuse 84.30 81.28 79.87 77.84 73.09 68.30 62.84

CoBEVT 87.02 85.26 83.30 81.33 77.83 70.79 63.47
AdaFusion 87.31 87.15 86.25 84.22 79.79 72.89 64.15

Where2comm 85.78 85.58 84.78 82.91 79.57 76.23 71.77

Table 3. Performance of different models under varying degrees
of localization error.

2.2. localization noise

Following Where2comm [3], we added different degrees of
localization error to our V2X-R dataset to conduct experi-
ments. As shown in Table 3, all methods experience perfor-
mance degradation to varying degrees as localization error



Methods Modality Class Metric Total Normal Overcast Fog Rain Sleet Lightsnow Heavysnow

AttFuse [16] L+4DR
Sedan

APBEV 70.3 68.0 89.4 90.5 79.5 66.9 88.3 60.4
AP3D 69.0 66.8 79.4 88.6 70.7 59.2 86.2 58.6

Bus
APBEV 64.3 59.4 75.7 - 0.4 66.2 80.7 70.8
AP3D 51.0 53.3 75.6 - 0.2 65.6 76.8 36.3

AttFuse w/ MDD L+4DR
Sedan

APBEV 76.8 73.8 88.9 90.8 79.7 68.7 88.4 61.5
AP3D 74.0 67.2 85.5 89.6 75.7 64.6 84.5 59.8

Bus
APBEV 64.1 55.3 72.0 - 15.1 62.7 97.5 73.9
AP3D 54.6 52.8 71.0 - 15.0 61.3 85.2 42.6

Table 4. Quantitative results of different 3D object detection methods on K-Radar dataset. We present the modality of each method
(L+4DR: LiDAR-4D radar fusion) and detailed performance for each weather condition. Best in bold.

Modality Method Epoch Batch size Max Agents Learning Rate LR Scheduler

V2XViT [15] 20 2 5 0.001 Multistep
AttFuse [16] 30 4 5 0.002 Multistep

Where2comm [3] 50 1 5 0.0002 Cosineannealwarm
SCOPE [18] 30 2 5 0.002 Multistep

CoBEVT [17] 30 2 5 0.001 Cosineannealwarm
CoAlign [6] 15 2 5 0.002 Multistep

AdaFusion [5] 30 2 5 0.0005 Multistep
SICP [11] 20 1 5 0.001 Multistep

LiDAR

MACP [7] 20 4 5 0.0002 Cosineannealwarm
PFA-Net [14] 30 4 5 0.001 Multistep

RTNH [9] 15 4 5 0.001 Multistep
V2XViT [15] 20 2 5 0.001 Multistep
AttFuse [16] 30 4 5 0.002 Multistep

Where2comm [3] 15 1 5 0.0002 Cosineannealwarm
SCOPE [18] 15 2 5 0.002 Multistep

CoBEVT [17] 30 2 5 0.001 Cosineannealwarm
CoAlign [6] 20 2 5 0.002 Multistep

AdaFusion [5] 15 2 5 0.0005 Multistep

4D Radar

SICP [11] 20 1 5 0.001 Multistep
InterFusion [13] 20 1 5 0.002 Multistep

L4DR [4] 30 2 5 0.002 Multistep
V2XViT [15] 30 2 5 0.001 Multistep
AttFuse [16] 30 2 5 0.002 Multistep
SCOPE [18] 40 2 5 0.002 Multistep

Where2comm [3] 30 4 5 0.0002 Cosineannealwarm
CoBEVT [17] 40 2 5 0.001 Cosineannealwarm
CoAlign [6] 30 2 5 0.002 Multistep

AdaFusion [5] 40 2 5 0.0005 Multistep

LiDAR+4D Radar

SICP [11] 20 1 5 0.001 Multistep

Table 5. Experimental parameter settings (epoch, batch size, max agent, learing rate, lr scheduler) for different modalities and methods in
our benchmark section.

increases. This helps to explore performance under real lo-
calization errors.

2.3. Performance of various weather on K-Radar.

To further demonstrate the performance improvement of
our MDD module in various real-world adverse weather

conditions. We provide more detailed results on the K-
Radar real adverse weather dataset rather than just the av-
erage of adverse weather. As shown in Table 4, with the
addition of our MDD module, AttFuse first of all got a big
boost in Total basically (except for Bus’s APBEV ). Un-
der the Sedan class, there are significant improvements in



Component Parameter Value

Denoiser (U-net)

input channel 128
mid channel 128

timestep channel 64
output channel 64
number layers 2

number resblock 2

Diffusion Process timesteps 3
betas [0.005,0.0275,0.05]

Table 6. The implementation details of our MDD module.

every weather except Overcast which is similar, especially
in 6.1 AP3D@Overcast and 5.4 AP3D@Sleet performance
improvements. In addition, the results of the Bus class are
well worth exploring. We find significant decreases in Nor-
mal, Overcast, and Sleet, but very significant increases in
Rain, Lightsnow, and Heavysnow. We assert this is due
to the nature of the larger 3D bounding boxes of the Bus
class, which is particularly sensitive to the denoising mod-
ule, causing a drop in some weather and a significant rise
in others. Overall, however, the Total performance on the
Bus class remains suggestive. These detailed analyses fur-
ther validate the effectiveness of our MDD module under
real-world conditions.

3. Training Detail
3.1. Benchmark

We also provide details about the training of all the bench-
mark models in the main text for researchers to refer to, as
shown in Table 5. In addition, we will disclose the training
profiles of all models and the pre-trained models. This can
help researchers efficiently use our well-trained models on
the V2X-R dataset or reproduce the same results.

3.2. Implementation of MDD

Here, we will provide a concrete implementation of the
MDD module. It comprises a denoiser network with a U-
net [12] structure and a diffusion process. Some important
parameter settings are shown in Table 6.

3.3. Configuration of weather simulation

To help the reader gain a deeper understanding of the se-
vere weather portion of the study in our V2X-R work. As
shown in Table 7, we list here some important configura-
tions for fog and snow simulations, mainly parameters used
to adjust the level of adverse weather. Most of the other con-
figurations implemented refer to the default configurations
available on their official open-source code 1 2. In addition,

1Fog Simulation Code
2Snow Simulation Code

Simulation Parameter Value

Fog Simulation [1]

gamma 0.000001
alpha 0.06

noise variant v2
noise 10

r noise random(1, 20)
max intensity 255

Snow Simulation [2]

num intervals 64
interval index random(1,64)
snowfall rate 0.5

terminal velocity 0.2
noise floor 0.7

beam divergence 0.003
max intensity 255

Table 7. The detailed configuration of weather simulation. The
parameter names refer to the naming of the official source code
and the exact meanings can be found in [1, 2].

the simulation code we implemented will be included in the
publicly released code in the future.

3.4. K-Radar dataset and evaluation metrics

The K-Radar dataset [8] contains 58 sequences with 34944
frames of 64-line LiDAR, camera, and 4D radar data in var-
ious weather conditions. According to the official K-Radar
split, we used 17458 frames for training and 17536 frames
for testing. We adopt two evaluation metrics for 3D ob-
ject detection: AP3D and APBEV of the class ”Sedan” and
”Bus” at IoU = 0.3. We use the newest version (v2.1) of the
label.

4. Visualization of V2X-R Dataset

Finally, in order to visually intuitively verify the realism of
the simulated LiDAR-4D radar data on our V2X-R dataset
and the advantages of the cooperative LiDAR-4D radar
point cloud. We have visualized and compared the simu-
lated LiDAR-4D radar point cloud on our V2X-R dataset
with the real LiDAR-4D radar point cloud on the VoD
dataset [10]. As shown in Fig. 1, it can be found that
our simulated LiDAR-4D radar point cloud has a certain
degree of realism. This proves the value of conducting 4D
radar-related research on our V2X-R dataset. Meanwhile,
by comparing the real single-agent 4D radar with the multi-
agent 4D radar, it can be found that the multi-agent collabo-
rative 4D radar has a significantly higher resolution. As we
introduced in the Introduction section of the main text, the
multi-agent cooperative 4D radar has a certain independent
perception ability.

https://github.com/MartinHahner/LiDAR_fog_sim
https://github.com/SysCV/LiDAR_snow_sim
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Figure 1. Visualization of our V2X-R dataset and VoD [10] real-world dataset. The L+4DR in the last column indicates that the LiDAR
point cloud is visualized together with the 4D radar point cloud, where to distinguish between them, we use colored dots (slightly smaller)
for the LiDAR point cloud and orange dots (slightly larger) for the 4D radar point cloud. Colored point clouds are assigned by z-axis
values.
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