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This supplementary material provides additional techni-
cal details (§1), extended experimental results (§2), and dis-
cusses limitations (§3) of WeGen.

1. More Details about WeGen

Visual Encoder-Decoder. As shown in Fig. 1, unlike VAE-
based approaches, we adopt the CLIP model as our im-
age encoder to leverage its semantic extraction capabili-
ties, enabling efficient text-visual joint modeling with sig-
nificantly reduced training cost and data requirements (Ta-
ble 1 in the main paper). However, CLIP encoders of-
ten struggle with preserving fine-grained visual details. As
discussed in the main paper, we observe that larger CLIP
models better maintain visual details while preserving se-
mantic extraction. Based on this, we employ a pretrained
EVA-CLIP [18](4.9B) as our image encoder. Through bicu-
bic interpolation of position embeddings, we extend the
encoder to process 448→448 inputs instead of its original
224→224 resolution. The encoder outputs 16→16→1792
feature maps, which are pooled into a 64→1792 sequence,
preserving both semantic information and visual details.
For the decoder, we fully fine-tune SDXL’s UNet weights,
using a learning rate of 5e-4 with cosine scheduling and
classifier-free guidance training by randomly drop 10% in-
put image features. As shown in Figure 2, this configuration
achieves superior reconstruction quality compared to exist-
ing methods.
Multi-modal Feature Modeling. As shown in Fig. 1, we
adopt an autoregressive approach for visual feature model-
ing. Unlike parallel generation methods [2–4] that simul-
taneously predict all visual features from fixed placeholder
tokens (e.g.<img1> to <img64>), our approach generates
features sequentially with explicit dependencies:

P (x|c) =
64∏

i=1

P (xi|x<i, c) (1)

*Equal contribution ‡Work done as interns at WeChat
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Figure 1. Detailed architecture of WeGen.

This explicit modeling of inter-feature dependencies en-
ables our model to better capture holistic visual structure.
Each term P (xi|xi→1, ..., x1, c) leverages previously gener-
ated features as context, rather than generating features in
isolation (P (xi), P (xi→1) ...). As shown in Figure 3, the
quality difference becomes more evident with a fully fine-
tuned UNet decoder. This is because when UNet focuses
purely on decoding, generation quality heavily depends on
MLLM’s visual feature modeling, the parallel approach
(left) shows blocking artifacts due to independent feature
generation, while our autoregressive approach (right) main-
tains coherence through contextual generation. While par-
allel visual modeling approaches [2–4] rely on SDXL’s pre-
trained weights and inherent generation capability to com-
pensate for weaker MLLM visual feature modeling, this de-
pendency on the original SDXL decoder limits the MLLM’s
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Figure 2. Qualitative comparison of reconstruction quality.

Task Dataset

Reconstruction Laion-COCO [8], Object365 [16],
OpenImages [7]

Text2Image Laion-COCO-Recaption(Ours),
CapsFusion [22], JourneyDB [17]

Subject-Driven GrIT [14], DIIC(Ours)

Restoration Laion-COCO [8](Self-Aug),
MultiGen-20M [15]

Editing SEED-Edit [4], MagicBrush [23]
Condition Gen MultiGen-20M [15], HR-VITON [9]
Style Transfer StyleBooth [5], MultiGen-20M [15]

Understanding Laion-COCO-Recaption(Ours), LLaVA-150K [10],
LLaVAR [24], ScienceQA [12]

Table 1. Overview of training datasets.

fine-grained control over generation and editing tasks, mak-
ing it challenging to achieve a truly unified visual design
copilot.
Dataset Details Table 1 presents a comprehensive overview
of the diverse datasets used for training our model. Our
training leverages two primary datasets: (1) DIIC, contain-
ing 35M high-resolution frames with an average of 4.9 in-
stances per frame and detailed captions (mean length 25.4
tokens); (2) Laion-COCO-Recaption, comprising 600M
image-text pairs, each paired with both a concise caption
(mean 10.2 tokens) and its expanded description (mean 79.6
tokens).

2. Additional Evaluation Results

Multi-Subject Generation Benchmark. We construct a
multi-subject generation benchmark using CelebA-HQ [26]
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Figure 3. Visualization of feature modeling results. Left: parallel
generation showing blocking artifacts. Right: our autoregressive
generation producing more coherent visual features.

dataset, containing 2000 test cases with GPT-4 generated in-
teraction prompts. Each case includes 2-3 reference faces.
We evaluate using CLIP-T for text-image alignment, CLIP-
I, DINO and face similarity1 between reference and gener-
ated faces for identity preservation. As shown in Table 3,
WeGen achieves superior performance across all metrics.
Understanding Capabilities. As shown in Table 4, while
our primary focus is on unified visual generation for a de-

1Using face recognition library (https : / / github . com /
ageitgey/face_recognition)

https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
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Figure 4. Extended case studies demonstrating WeGen’s diverse capabilities across multiple visual generation tasks.

sign copilot, WeGen still achieves superior understanding
performance2 among unified models and maintains compa-
rable results with understanding-only models across various
visual understanding benchmarks.
Extended Case Studies. Figure 4 presents additional
examples showcasing WeGen’s capabilities across diverse

2All benchmarks are evaluated using VLMEvalKit (https://
github.com/open-compass/VLMEvalKit)

tasks.

3. Limitations and Discussions

As shown in Figure 5, our approach exhibits degraded
instance-level consistency when handling multiple refer-
ence images. While performing well with 2-3 references,
the identity preservation deteriorates as reference number
increases.

https://github.com/open-compass/VLMEvalKit
https://github.com/open-compass/VLMEvalKit
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Figure 5. Failure cases with increasing number of reference images.

Configuration Visual Decoding Stage 1 Stage 2

Optimizer AdamW
Adam (ω1, ω2, ε) (0.9, 0.999, 10→8) (0.9, 0.95, 10→6)

Peak LR 5→ 10→4 5→ 10→4 1→ 10→4

LR schedule cosine decay
Gradient clip 1.0 5.0
Training steps 5k 15k 5k
Warmup steps 1000
batch size 4096 2048
precision bfloat16

Table 2. Training hyperparameters across different stages.

Method DINO (↑) CLIP-I (↑) Face Sim. (↑) CLIP-T (↑)

Kosmos-G 0.583 0.712 19.1 0.285
Emu2 0.773 0.801 30.4 0.294
SEED-X 0.664 0.709 20.8 0.291
WeGen (Ours) 0.803 0.845 52.4 0.294

Table 3. Performance comparison on multi-subject generation
benchmark. Face Sim. denotes face similarity.
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