WildAvatar: Learning In-the-wild 3D Avatars from the Web

Supplementary Material

A. Details in Data Collection

Downloading Video Candidates. Our first goal is to collect
videos from the web with human motions. To cover a wide
range of in-the-wild human-central activities, we start from
a label pool of human motion datasets [8]. Based on these
human motion labels (e.g., fishing and playing tennis), we
download over 100k+ video candidates from YouTube API.
Per-filtering Video Clips. Some collected video candidates
could not meet the high-quality human avatar creation re-
quirement. For example, human bodies may not exist at all
(e.g., blank preview, severe occlusion) or frequently change
across scenes (e.g., montage) in some subsections of these
videos. To exclude such unqualified subsections, we utilize
SceneDetect [1] to cut video candidates into clips and elimi-
nate those with insufficient length (less than 2 seconds). Sub-
sequently, we apply human detection models with low FPS
to these clips to efficiently filter out those without human
subjects at minimal cost. After filtering video candidates, we
obtain 460k+ video clip candidates for further processing.

B. Details in Data Pipeline

In addition to the main paper, we provide more details on
the data processing pipeline and filtering protocols.

Stage I: Human Bounding Box Detection and Tracking.
We first obtain the bounding box of human subjects with off-
the-shelf state-of-the-art detection methods (e.g., Yolo [10]
and Detectron2 [14]). We only keep the video clip with at
least one “person” instance with its detection threshold over
0.8 on all detection models. The tracking step is finding the
largest IOU overlay of bounding boxes among frames. We
discard low-resolution human subjects whose bounding box
areas are lower than 64 x 64. To ensure the richness of the
dataset, we only keep one “key subject” for each video, as
clips from the same video may probably share the same key
subject.

Stage II: Human Segmentation Mask Extraction. We
first obtain the 2D keypoints J5p for human subjects using
the popular HRNet [12] and DWPose [16]. Given the 2D
keypoint annotations, we can also discard over part-occluded
subjects. In particular, we only keep the subject with the
average confidence of 2D keypoints over 0.65. For segmenta-
tion, we feed the 2D bounding box and the 2D keypoints into
the sam_vit_h sub-model to extract the foreground mask.
Stage III: Coarse SMPL and Camera Estimation. We
first estimate SMPL and camera parameters frame by frame,
using state-of-the-art single-image-based human pose and
shape (HPS) estimation methods [3, 7]. To perform better in
complex scenes in the wild, we adapt the model pre-trained

on the in-the-wild 3DPW dataset [13]. The HPS models in-
fer human body pose/shape parameters (6/3) and the global
camera parameters (rotation matrix R and the 3D offset 7).
To retain the remaining video clips with considerable view-
point shifts and human movements, we discard the clips
with viewpoint angle changes lower than 7 rad. We also
automatically select the most non-trivial N = 20 frames,
which keeps the pose and viewpoint diversity to the great-
est extent possible. As mentioned in the main paper, we
double-check the consistency of the SAM and SMPL masks.
Intuitively, the SMPL mask denotes the naked body, while
the SAM mask contains the clothed body. Therefore, the
SMPL mask should be mostly covered by the SAM mask
(See Fig. F (a) ~ (d)). We discard the subjects whose SAM
masks are over 3 x larger than their SMPL masks (See Fig. F
(e) ~ (h)). We also discard the subjects whose 10% SMPL
mask pixels from main bodies are not covered by the SAM
mask (See Fig. F (i) ~ (1)). Similarly, we double-check the
consistency of the 2D keypoints from 2D pose and SMPL
estimations and discard the clips with the averaged PCK less
than 0.85.

Stage I'V: Refining SMPL and Camera In-the-loop. We
refine the coarse SMPL parameters (6, 5) and camera param-
eters (R, T") obtained in Stage I for high-quality annotations.
To achieve temporally smooth results, we regularize the dif-
ferences in parameters between adjacent frames, which is
given by
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where J5p (6, 8) infers the 3D keypoints of the human
body, and the II denotes the 2D projection, and ¢ denotes the
145, frame of the input video. Notice that the body shapes (5)
are treated as constants across the input video.

In addition, we align the human body parameters to the
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Figure A. Qualitative comparison of our four-stage pipeline and the state-of-the-art HMR2.0 [3]. Our pipeline can adapt to complex
environmental scenes and output reasonable results in uncommon scenarios.

2D keypoints and SAM masks, which are given by
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where M,.4(6, B) denotes the rendered mask related to the
SMPL parameters. The M* denotes the foreground of the i
frame. We also regularize 6 to avoid out-of-domain poses [2],
using the Gaussian Mixture Model (GMM) prior [9]
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We adopt the loss functions as mentioned above for su-
pervision:
L=XMLy+ AL+ AL+ ASpL5p
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We empirically set the loss weights as A\j = 100, A% =
1000, A% = 50, A5 = 100, A2p = 100, Amask = 100 and
Aprior = 0.1. We adopt the LBFGS [11] optimizer with the
learning rate Ir = 1.0. Qualitative comparisons between
coarse and refined SMPL and camera parameters can be
found in Fig. E.

Efficiency. Data collection and annotation efficiency are
also crucial for data scale-up and application. Despite the
complex multiple-stage design, our data-collecting pipeline
only takes less than 200 seconds to generate full annotations
for a 20 seconds in-the-wild video clip.

C. Details in Pipeline Evaluation

Dataset. We evaluate our four-stage pipeline on the in-the-
wild EMDB [6], which is widely recognized for its challeng-
ing and diverse real-world scenarios. We use the EMDB-1
split to evaluate the camera-coordinate performance. EMDB-
1 contains 17 sequences totaling 13.5 minutes.

Metrics. For joints, we compute error on the 24 main joints
of the human body under the SMPL convention. As for
vertex, we calculate the point-to-point corresponding error
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Figure B. Visualization of SMPL overlay on unusual camera viewpoints. Our pipeline can show robust annotations on unusual camera

viewpoints and body poses.

on the SMPL vertices. We report quantitative results on
MPIJPE, PA-MPIJPE [5], and PVE [15]. MPJPE (Mean
Per Joint Position Error) calculates the mean distances be-
tween the predicted and ground-truth 3D joints after the
translation alignment at the pelvis joint. The predicted or
ground-truth 3D joints are regressed from corresponding
pose and shape parameters. PA-MPJPE (Procrustes anal-
ysis MPJPE) calculates the mean distances between the
predicted and ground-truth 3D joints after Procrustes Analy-
sis [4], including alignment in scale, translation and rotation.
PA-MPJPE mainly focuses on the quality of pose and shape
estimation, regardless of global rotation. PVE (Per Vertex
Error) calculates the mean distances between the vertices
on the human mesh without any alignment, which evaluates
the reconstruction accuracy of the human surface.

Qualitative Comparisons. Qualitative comparisons on the
EMDB dataset are also shown in Fig. A (a) ~ (d). Com-
pared to previous state-of-the-art HMR2.0 [3], our pipeline
can adapt to complex environmental scenes and output rea-
sonable results in uncommon scenarios. For example, our
pipeline can accurately predict 1) the foot and ankle pose
of Fig. A (a) & (c); 2) the head and neck pose of Fig. A (b)

& (d); 3) the global alignment of Fig. A (a), (b) & (d). Qual-
itative comparisons on the 3DPW dataset are also shown
in Fig. A (e) ~ (h). Compared to the official ground truth
(GT) from expensive IMUs, our annotations also exhibit
better alignment on 1) the foot and ankle pose of Fig. A
(e) ~ (g); 2) the head and neck pose of Fig. A (g); 3) the
hand pose of Fig. A (h). These comparisons validate the
annotation quality of our pipeline for in-the-wild videos.

D. License, Statistics and Visualizations

The authors bear all responsibility in case of violation of
rights and confirm that this dataset is open-sourced under the
S-Lab License 1.0 license. We shall enforce strict regula-
tions when applying our code and data to mitigate potential
negative social impacts. 69.1% / 30.9% scenes in WildA-
vatar are indoor/outdoor, respectively. 45.3% / 54.7% of
the scenes in WildAvatar have single/multiple human(s), re-
spectively. And 34.6% / 65.4% subjects in WildAvatar are
male/female, respectively. More visualization of SMPL over-
lay on unusual camera viewpoints can be found in Fig. B.
More RGB examples can be found in Fig. C, and examples
of different SSIOU ranges can be found in Fig. D.



Figure C. More RGB examples from the proposed WildAvatar dataset. The best view zoomed in on-screen for details.
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Figure D. Examples of different SSIOU ranges. SSIOU rises from up to down. The last row shows the SSIOU larger than 1.9. The samples
with SSIOU larger than 1.9 are mostly caused by loose dresses rather than erroneous SMPL fitting.

(8




| RGB I Coarse Il Refined | RGB I Coarse I Refined |

Figure E. Comparison of the coarse and refined SMPL parameters. The coarse SMPL annotations are from Stage 111, and are later refined in
Stage IV. The refined SMPL parameters achieve better alignments to the raw RGB images.

RGB SMPL SAM

Figure F. SMPL and SAM consistency. The green/red borders denote good/bad outputs, respectively. Note that the SMPL annotations are
coarse results from Stage III, which are later refined in Stage I'V.
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