
Zero-shot 3D Question Answering via Voxel-based Dynamic Token Compression

Supplementary Material

The supplementary material is structured as follows:
• More compression analysis in Section A.
• A more detailed diagram of DTC in Section B.
• More performance comparison in Section C.
• Compression results on more input frames. D.
• FLOPs and memory reduction in Section E.
• Details of LLM-Match evaluation in Section F.
• Additional experiments on SQA3D in Section G
• Additional qualitative results in Section H.
• Limitations and future works in Section I.

A. Compression Analysis.
Vanilla Token Compression. In Vanilla Token Compres-
sion (VTC), the number of visual tokens depends on the
pre-defined voxel size vsize. Table A1 shows the visual to-
kens across all 3D scenes in the OpenEQA dataset under
various voxel size settings. Without VTC, the base model
uses 12 frames as input, resulting in 8,748 visual tokens for
all the 3D scenes.

Table A1. Average, minimum, maximum number of visual to-
kens and their corresponding LLM-Match score on the OpenEQA
dataset across all the 3D scenes under different voxel sizes in VTC.

vsize avg. tokens min tokens max tokens LLM-Match

- 8,748 8,748 8,748 56.2
0.10 3,662 791 6,634 54.2
0.12 3,026 623 6,156 52.6
0.14 2,546 482 5,654 51.9
0.16 2,272 396 5,174 50.5
0.18 1,880 342 4,729 48.9
0.20 1,641 287 4,356 49.0
0.22 1,442 248 4,052 47.4
0.24 1,279 204 3,696 47.5
0.26 1,141 172 3,427 45.6
0.28 1,029 164 3,143 45.5
0.30 930 141 2,904 44.7
0.32 842 131 2,729 44.4
0.34 768 124 2,507 43.6

Dynamic Token Compression. In Dynamic Token Com-
pression (DTC), the number of remaining visual tokens de-
pends on the number of compression iterations. In each it-
eration, visual tokens are assigned to voxel space, and then
undergo compression using bipartite soft matching within
each voxel. The voxel size starts at an initial value vinit and
increases by ∆v with each iteration, reaching the final size
vfinal in the last iteration. For all experiments, we set vinit
to 0.1m and ∆v to 0.02m. See more results in Table. A2.

Table A2. Average, minimum, maximum number of visual to-
kens and their corresponding LLM-Match score on the OpenEQA
dataset across all the 3D scenes under different number of itera-
tion in DTC. All the experiments start with initial voxel size vinit

0.1m, and ends at different final voxel sizes vfinal.

# Iteration vfinal avg. tokens min tokens max tokens LLM-Match

0 - 8,748 8,748 8,748 56.2
1 0.10 6,400 2,036 7,697 55.4
2 0.12 4,867 1,444 6,808 55.3
3 0.14 3,729 1,022 6,003 54.3
4 0.16 2,886 731 5,292 53.9
5 0.18 2,261 535 4,664 54.1
6 0.20 1,796 381 4,119 53.5
7 0.22 1,447 284 3,689 52.5
8 0.24 1,181 215 3,261 51.8
9 0.26 980 160 2,894 50.0

10 0.28 824 127 2,265 49.4
11 0.30 705 101 2,290 49.3

Table A3. Statistics of the ScanNet and HM3D subset from the
OpenEQA dataset. The table shows the average number of visual
tokens resulting from 11 iterations of dynamic token compression,
along with the average dimensions and size of 3D scene.

Subset # scenes avg. tokens avg. dimension (m) avg. size (m3)

ScanNet 89 404 5.6× 5.4× 2.3 82.6
HM3D 63 1,287 12.3× 9.8× 4.2 556.0

Comparison of VTC and DTC Both VTC and DTC ef-
fectively reduce the number of visual tokens and achieve
higher performance than frame sampling method, see
Fig. C2. However, unlike VTC, DTC incorporates visual se-
mantics into the compression process and compresses only
the visual tokens connected by edges in each iteration. This
more selective compression approach helps achieve higher
performance in 3D question answering tasks.

Affect of 3D Scene Size. Unlike other token compression
methods such as spatial pooling, the resulting number of vi-
sual tokens in our method is dynamically determined by the
3D scene size. In the OpenEQA dataset [7], the episode his-
tories span across 3D scenes collected from diverse sizes.
Table A3 shows the number of tokens resulting from our
proposed DTC, along with spatial statistics from two sub-
sets of OpenEQA, including ScanNet [4] and HM3D [8].
We observed that HM3D’s larger scene scale affects the ex-
tent of compression. Nonetheless, our method remains ef-
fective compared to existing approaches like spatial pool-
ing, as these methods yield an unbounded number of visual
tokens, while our approach caps the token usage based on
scene size, ensuring finite token usage.
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We use the bottom left voxel as example. 8 visual 
tokens (colored) are inside this example voxel.

Dynamic Token Compression is applied to each voxel to reduce the
number of visual tokens. The visual tokens within this specified
voxel is reduced from 8 to 6 after Dynamic Token Compression.

A larger voxel size is used to repeat Step 1, this
time 9 visual tokens are inside the example voxel.

Figure A1. A more detailed diagram of dynamic token compression. We use the bottom left voxel as an example, with colored visual
tokens denote within this example voxel. All the voxels will apply this token compression process. Best viewed when zoom in.

B. More Detailed Diagram of DTC

We present a more detailed diagram illustrating the idea
of Dynamic Token Compression (DTC) in Fig. A1. We
demonstrate the token compression’s step-by-step process
including (1) Voxelization that assigns the visual tokens into
3D space, (2) the dynamic token compression that conducts
token compression based on visual semantics, and (3) in-
creasing the voxel size and repeat step 1.

C. Performance Comparison.

Fig. C2 compares how well DTC and VTC preserve per-
formance at each level of visual token usage relative to the
base model. At low compression rates, DTC and VTC show
similar performance, both outperforming the base model’s
frame sampling method. As the compression rate increases,
VTC’s performance drops rapidly, while DTC sustains a
slower decline due to its 3D spatial and semantic-aware
compression, which helps minimize visual information loss.
Nonetheless, both DTC and VTC achieve higher LLM-
Match scores than the base model, highlighting their effec-
tiveness in balancing performance and efficiency.

D. Compression Results on More Frames.

Different from previous approaches such as single frame-
level token reduction [2, 3] or spatial pooling [5, 11, 12], our
dynamic token compression leveraged both 3D spatial and
visual semantic to conduct token compression, and the re-
sulting number of visual tokens is mostly related to the size
of the 3D scene, which means given a fix-sized 3D scene,
our method can ensure the number of visual tokens within a
finite number, even if the 3D scan video is extremely long.
In our experiments, we only compress the visual tokens ob-
tained from 12 multi-view frames in each 3D scan in order
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Figure C2. A comparison of LLM-Match score on OpenEQA be-
tween base model, VTC and DTC.

to make a fair comparison with the base model. However, in
the real-world scenario, it is possible that the input 3D scan
video can span several hours in the temporal dimension. In
this case, our token compression method can be even more
effective with a longer 3D scan duration compared with our
12 multi-view image experiments.

To showcase the visual token usage compared with the
base model and other token reduction methods such as spa-
tial pooling, we conduct experiments on how the token
usage increases over a 3D scan with thousands of input
frames. We randomly sampled a 3D scan from ScanNet
with more than 1k frames and conducted a comparison of
visual token usage between the base model, spatial pool-
ing with bi-linear token interpolation [5], and our proposed
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Figure D3. The accumulative visual token usage across the base
model, spatial pooling, and dynamic token compression is evalu-
ated with multiple input multi-view images from a 3D scan video.
The number of multi-view images is represented on a log scale.

DTC. As shown in Fig. D3, the llava-type base model and
spatial pooling exceed the large multi-modal model’s con-
text length limit before reaching 1k input frames. At the
same time, our method can retain the number of visual to-
kens under the context length limit with over 1k frame input.

E. FLOPs and Memory Reduction.

Table E4. Comparison of GPU memory requirements, FLOPs, and
throughput (TP) after applying DTC.

Config Memory (GB) FLOPs (T) TP (samples / min)

Base model 31.3 3.93 21.6
w/ DTC (9%) 18.7 0.34 32.1

Table E4 summarizes the FLOPs and memory reduction
results after applying dynamic token compression, high-
lighting the importance of token compression in improving
the computational efficiency of VLMs.

F. LLM Evaluation Details.
OpenEQA uses LLM to automatically evaluate the model’s
prediction. We follow the OpenEQA dataset’s official LLM
evaluation prompt and use the same GPT-4 [1] check-
point (gpt-4-1106-preview) with the provided prompt. The
used prompt is shown in Fig. E4, with the model evaluating
the similarity between the prediction and the groundtruth.

G. Additional experiments on SQA3D
We also benchmarked DTC on SQA3D [6], see Table G5 for
scale comparison on the tested benchmarks and Table G6
for the performance on SQA3D.

Table G5. Scale comparison
of existing 3D question an-
swering benchmarks.

Benchmark # of questions / scenes

OpenEQA 1,636 / 152
ScanQA 4,306 / 71
SQA3D 3,519 / 67

Table G6. Results on SQA3D.

Methods EM@1

Base model 51.4

w/ Frame Sampling (8%) 42.3
w/ Temporal Pool (8%) 44.1
w/ Spatial Pool (9%) 38.7
w/ DTC (8%) 48.0

H. Additional Qualitative Results.
We present more qualitative results in Fig. I5. These re-
sults showcase the model’s predictions after applying our
proposed dynamic token compression. The examples are
drawn from the predicted answers in different question cat-
egories of OpenEQA, using fewer than 1,000 visual tokens
for the 3D scene.

I. Limitations and Future Works.
Limitations. While our proposed method demonstrates
impressive token compression and performance trade-offs
on 3D question answering tasks, it differs from previous to-
ken compression techniques that rely solely on visual se-
mantics as the compression prior. Our approach requires
3D knowledge, such as depth and camera pose, under the
situation when this information is not available, geometry
estimation [10, 14] might be needed in order to apply our
method. However, our method still remains practical in
some real-world scenarios, such as home robotics, where
modern consumer robots typically integrate depth sensors,
and the camera’s extrinsic parameters are known.

Future works. Our token compression method currently
serves as an effective approach to reduce visual token us-
age in multi-frame VLMs while maintaining competitive
performance. However, it operates assuming that the 3D
scene remains static, with objects retaining their states
and locations throughout the 3D scan. In real-world sce-
narios, objects may change position or undergo seman-
tic changes over time. Although existing 3D question-
answering datasets are based on static scenes, we see a
need to explore 3D question-answering tasks in dynamic
environments and to develop token compression meth-
ods that can effectively handle dynamic 3D scenes. Fur-
thermore, exploring using extra temporal information like
tracking [9, 13] can potentially decoupled the static and dy-
namic objects for more efficient compression.



You are an AI assistant who will help me to evaluate the response given the question, the correct answer, and extra 
answers that are also correct. To mark a response, you should output a single integer between 1 and 5 (including 1, 5). 
5 means that the response perfectly matches the answer or any of the extra answers. 1 means that the response is 
completely different from the answer and all of the extra answers. 

Example 1:
Question: Is it overcast?
Answer: no
Extra Answers: [’doesn’t look like it’, ’no’,’ it’s sunny’] Response: yes
Your mark: 1 

Example 2:
Question: Who is standing at the table? Answer: woman
Extra Answers: [’a woman’, ’a lady’, ’woman’] Response: Jessica
Your mark: 3 

Example 3:
Question: Are there drapes to the right of the bed?
Answer: yes
Extra Answers: [’yes, there are drapes’, ’yeah’, ’the drapes are to the right of the king bed’] Response: yes
Your mark: 5 

Your Turn:
Question: {question}
Answer: {answer}
Extra Answers: {extra_answers} Response: {prediction} 

Figure E4. Prompt used for LLM-Match scoring in the OpenEQA dataset. The placeholders {question}, {answer}, {extra answers},
and {prediction} are replaced by the question Q, ground truth answer A∗, additional answer, and the agent’s predicted answer A,
respectively. The extra answers are only available for object localization category. The prompts for the corresponding sections are omitted
when extra answers not available.



Question (attribute recognition): What is the color of the biggest
robot in the painting? Answer : red

Question (functional reasoning): Where can the adult take a nap?
Answer : on the couch

Question (attribute recognition): What color pattern is on the
pillow? Answer : checkered

Question (world knowledge): Is this a room for an adult or a baby?
Answer : baby

Question (spatial understanding): What is between the two beds?
Answer : nightstand

Question (object state recognition): Is the nightstand clean of full
of things? Answer : clean

Question (object localization): Where can you find a painting?
Answer : above the bed

Question (object localization): Where is the remote?
Answer : on the bed

Question (spatial understanding): If you were to position yourself
looking at the whiteboard and then do a 90 degree turn to the right,
what will you see in the wall? Answer : window

Question (spatial understanding): There’s a red and black marker
over a shelf, what is bellow them on the ground?
Answer : trash can

Question (world knowledge): What is the main purpose of this room?
Answer : The main purpose of this room appears to be for meetings or group discussions, as indicated by the presence of a
whiteboard and the arrangement of chairs around a table. The room is designed to facilitate collaboration and communication
among individuals.

Question (attribute recognition): What is the shape of the painting
on the wall? Answer : rectangle

Question (spatial understanding): What is between two monitors
on the table? Answer : piano keyboard

Question (spatial understanding): Is there enough room on the
table to work on a laptop? Answer : yes

Question (object localization): Where is the box of bottled water?
Answer : on the floor

Figure I5. Qualitative results from the ScanNet subset of the OpenEQA dataset, showcasing answers generated after applying DTC with
an average of fewer than 1,000 visual tokens per 3D scene. These examples highlight DTC’s effectiveness in compactly representing
real-world 3D scenes.
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