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1. More Implementation Details
We follow [5] to use DDETR [6] and obtain human-object
detection pairs. For the diffusion forward process, we gen-
erate {βk}Kk=1 by linearly interpolating from 0.001 to 0.2.
Then, we compute αk = 1 − βk, αk =

∏k
s=1 αs. In the

diffusion reverse process, we follow [4] to generate the step
embedding fk

s to provide time step information to the dif-
fusion model. We build the diffusion model based on DiT-S
[4], with 12 transformer layers.

2. More Architecture Details
Here we provide more details about the model architecture
of the diffusion model in our framework as introduced in
Sec. 4.3 of the main paper.

For an input HOI image of size H ×W × 2, we convert
it into H + W tokens via the proposed slice patchification
architecture. Specifically, first, we split the H × W × 2
HOI image into H horizontal slice patches (each with size
W × 2), and W vertical slice patches (each with size H ×
2). Then we convert the obtained patches into tokens using
linear projection [4]. In particular, we construct an MLP
layer to convert the H horizontal slice patches to H tokens,
and an MLP layer to convert the W vertical slice patches to
W tokens. All the obtained tokens are of equal dimension
(i.e., 384) as DiT token embeddings. The obtained H tokens
and W tokens are concatenated together, resulting in a total
of H +W HOI image tokens.

After constructing the H + W tokens, given a diffu-
sion step k and the appearance feature fa, as mentioned in
Sec 4.2 in the main paper, we aim for the diffusion model
to also involve these information during its reverse diffusion
process. To achieve this, we first construct the diffusion step
embedding fk

s [4]. Moreover, we convert the appearance
feature to embedding of the same dimension as the HOI im-
age token (i.e., 384) via an MLP layer. Then, we input the
H +W tokens as image token sequence to the DiT blocks
and meanwhile input the constructed step embedding and
the converted appearance embedding as conditioning em-
bedding to the DiT blocks [4]. This process finally outputs
a sequence of H +W tokens.

Finally, in the last part of the diffusion model, we aim to
obtain the final HOI image of size H×W×2 from the above
outputted H + W tokens. To achieve this, we first apply
linear projection [4] to the H +W tokens. Specifically, we
construct an MLP layer to project the H tokens to a tensor
with shape of H×(W×2), and construct another MLP layer
to project the W tokens to a tensor with shape W×(H×2).
Then, we reshape the tensors to obtain two tensors of shape

H × W × 2 [4]. Finally, we fuse the two tensors with an
MLP layer to obtain the final HOI image.

3. More Ablation Studies and Further Analysis
To evaluate our proposed HOI-IDiff framework more com-
prehensively, we conduct the following ablation studies on
the Default setting of HICO-DET [1].
Impact of the diffusion process. To further evaluate the
impact of employing the diffusion process, we compare our
HOI-IDiff with the following variants: (1) In Variant A,
we adopt the same diffusion model architecture as HOI-
IDiff but do not perform diffusion process, i.e., Variant
A is trained to directly predict the HOI image in a single
step. (2) Variant B is similar to Variant A, but we stack
the diffusion model architecture multiple times, resulting
in a model that has similar computation complexity as our
method. As shown in Tab. 1, the performances of the two
variants drop significantly, demonstrating the effectiveness
of the designed diffusion process.

Method Full Rare Non-rare
Variant A 42.09 42.35 42.01
Variant B 41.77 42.05 41.68
Ours 47.71 48.36 47.52

Table 1. Impact of the diffusion process.

More experiments on the HOI image formulation. In our
framework (H×W ×2 HOI image), we formulate the HOI
image Ihoi as the product of vobj with size H and mint with
size W ×2. In Tab. 3 of the main paper, to validate this for-
mulation of HOI image, we have compared our framework
with variants I, II, IV. We here further extend this ablation
study with the following variants. In variant V (W × 2 HOI
image with H HOI image as condition), for each human-
object pair, we obtain its object classification results from
the off-the-shelf object detector. Then, instead of Ihoi, we
regard mint (of size W×2) as the HOI image and only gen-
erate mint. Note that in this process, vobj of size H is fed
to the diffusion model as a condition to guide the generation
of the W × 2 HOI image mint. In variant VI (H ×W HOI
image), for each human-object pair, instead of Ihoi of size
H ×W × 2, we formulate an HOI image of size H ×W .
In this formulated HOI image, the pixel value at the h-th
row and the w-th column indicates the presence probability
of the w-th interaction category, under the assumption that
the object in the current pair belongs to h-th object cate-
gory. During post-processing, we then apply threshold (0.5)
to the pixel values in the H × W HOI image predicted by
the diffusion model to obtain the interaction prediction re-



sults. Notably, unlike Ihoi, the HOI image formulated in the
above way does not guarantee each of its column (vertical
slice) to sum to 1. Thus, in the diffusion process we use in
variant VI, unlike our proposed HOI image diffusion pro-
cess, we do not encourage each column (vertical slice) of
the HOI image to sum to 1. As shown in Tab. 2, our method
(H ×W × 2 HOI image) outperforms the above two vari-
ants. This further shows the superiority of our HOI image
formulation design.

Method Full Rare Non-rare
I: W × 2 HOI image 46.43 47.22 46.19
II: H & W × 2 HOI images 46.83 47.47 46.64
III: H ×W × 2 HOI image 47.71 48.36 47.52
IV: Box coordinates & H ×W × 2 HOI image 47.79 48.36 47.62
V: W × 2 HOI image with H HOI image as condition 46.60 47.39 46.37
VI: H ×W HOI image 42.26 42.57 42.17

Table 2. Further evaluation on the HOI image formulation process.

Impact of the number of diffusion steps K. We investi-
gate the impact of the diffusion step K on the performance
of HOI-IDiff. Specifically, we conduct experiments with
different diffusion steps (K = [10, 30, 50, 70]) as shown in
Tab. 3. As shown, the performance of HOI-IDiff increases
with K consistently when K is smaller than 50, and be-
comes stabilized after K reaches 50. Thus, taking the model
efficiency also into the consideration, we set K to 50 in our
experiments.

K Full Rare Non-rare
10 44.51 44.62 44.48
30 46.46 46.93 46.32
50 47.71 48.36 47.52
70 47.76 48.38 47.58

Table 3. Impact of the number of diffusion steps K.

Impact of the number of trials T in Multinomial distri-
bution. We explore the impact of the number of trials T
of the Multinomial distribution on the performance. We
conduct experiments with varying number of trials (T =
[500, 1000, 2000, 4000]) and show the results in Tab. 4. As
shown, the model performance improves with T when T is
smaller than 2000, and becomes stabilized after T reaches
2000, Thus, we set T = 2000 in our experiments.

T Full Rare Non-rare
500 44.81 44.63 44.86
1000 45.50 45.85 45.39
2000 47.71 48.36 47.52
4000 47.73 48.35 47.54

Table 4. Impact of the number of trials T .

Impact of the appearance features fa. In our framework,
we feed the appearance feature fa into the diffusion model
θ to guide its reverse diffusion process (w/ fa). To validate
the efficacy of fa, we test a variant (w/o fa) in which we do
not feed fa into θ during the reverse diffusion process. As

shown in Tab. 5, our framework with fa outperforms this
variant. This shows that fa can effectively guide the dif-
fusion model θ in the reverse diffusion process to generate
HOI images more accurately.

Method Full Rare Non-rare
w/o fa 43.15 43.05 43.18
w/ fa 47.38 48.18 47.12

Table 5. Evaluation on the appearance features fa.

4. More Visualizations

Comparisons of typical image diffusion process and our
proposed diffusion process. In our framework, we pro-
pose an HOI image diffusion process tailored for HOI im-
age generation. Here, to further evaluate this design, be-
sides the visualization in Fig. 3 in the main paper, we also
compare the generated final HOI images using typical natu-
ral image diffusion process [3] and our proposed HOI image
diffusion process. As shown in Fig. 1, the HOI image gen-
erated using typical natural image diffusion process appears
to be much more ambiguous than the HOI image generated
with our diffusion process. The white pixels in Fig. 1 (a)
scatter across different rows, which suggests that the pre-
dictions for object categories are spread over multiple cat-
egories. On the contrary, as shown in Fig. 1 (b), the HOI
image generated using our proposed HOI image diffusion
process is much more determinated, where the white pixels
are distinctly highlighted and are clearly concentrated on
the same row. This shows the efficacy of our proposed HOI
image diffusion process.

Figure 1. Visualization of the generated final HOI image of typical
image diffusion process (a) and our HOI image diffusion process
(b).



5. Analysis and Proofs

5.1. More Analysis about the Unique Property of
the HOI Image.

We here provide a more detailed analysis on the unique
property of the HOI image mentioned in Sec. 4.1 of the
main paper. Specifically, in this subsection, we first review
the formulation of HOI image introduced in Sec. 1 and Sec.
4.1 in the main paper. Then, we elaborate on how each of
the vertical slices of the HOI image sums to 1. Finally, we
discuss how we can uniquely decompose the HOI image to
vobj and mint if each of its vertical slices sums to 1.

Review of HOI image formulation. As introduced in Sec.
1 and Sec. 4.1 in the main paper, the HOI image is formed
by “multiplying” vobj and mint. Specifically, the object
classification output vobj represents a probability distribu-
tion of size H , where H is the number of object categories.
The interaction prediction output mint of size W × 2 con-
sists of W probability distributions, each with size 2, where
W is the number of interaction categories.

Elaboration on how vertical slices in HOI image sum to
1. Here we elaborate with the w-th vertical slice in the HOI
image as an example. Because the HOI image is formed
as the product of vobj and mint, its w-th vertical slice (i.e.,
Ihoi[:, w, :]) of size H × 2 is essentially derived by multi-
plying vobj of size H and the m-th distribution in mint (i.e.,
mint[w]) of size 2. As vobj and mint[w] both represent
probability distributions that each sums to 1, Ihoi[:, w, :]
represents a joint probability distribution that also sums to
1. Considering all W vertical slices, the HOI image essen-
tially contains W joint probability distributions that each
sums to 1.

Elaboration on how to decompose to vobj and mint.
Here, we also show that if each of the vertical slices in
an obtained matrix M (of size H × W × 2) represents a
probability distribution, it forms an HOI image, and we can
uniquely decompose the HOI image into the corresponding
vobj and mint. First, consider the w-th vertical slice of the
obtained matrix M [:, w, :] of size H × 2. We can obtain a
vector v1 of size H by summing along the second dimen-
sion, and a vector v2 of size 2 by summing along the first
dimension. Consequently, both the sum of v1 and the sum
of v2 are essentially equal to the sum of M [:, w, :], i.e., v1
and v2 both sum to 1. Then, for all the W vertical slices
in the matrix M , we can obtain W vectors of size H , and
W vectors of size 2. Each of the obtained vector sums to 1.
We can then uniquely derive vobj (of size H) by taking the
average of the W vectors of size H . Then, we can obtain
mint (of size W × 2) by collecting the W vectors of size 2
to form a matrix of size W × 2. Via the above, we can then
decompose M back to its corresponding vobj and mint.

5.2. Derivation of Eq. 5 in the Main Paper
In this subsection, we show how we derive Eq. 5 in the
main paper. To better elaborate on this, we first provide
more details and notations of the Multinomial distribution.
Details of Multinomial Distribution. We here first pro-
vide more details about the Multinomial distribution for bet-
ter understanding.

We denote Multinomial distribution as PMu(T, p),
where T is the number of trials and p (of size N ) represents
the probabilities of N categories, p sums to 1. PMu(T, p)
represents the distribution of counts of the picked categories
in T trials conducted with replacement, where in each trail,
one category is picked with the probabilities provided in p.
The likelihood function of the number of counts for all cat-
egories is defined as:

PMu(x;T, d) =
T !∏N

n=1 xn!

N∏
n=1

pxn
n , (1)

where x represents the non-negative integer counts across
all categories. Notably, elements in x sums to the total
number of trials T . Here, we can also easily compute the
Multinomial likelihood ϵMu of categories (ϵMu sums to 1),
by:

PMu
TϵMu(ϵ

Mu;T, d) =
T !∏N

n=1(Tϵ
Mu
n )!

N∏
n=1

p
TϵMu

n
n (2)

We use PMu
T (T, p) to represent sampling ϵMu from Eq. (2),

which is sampling from PMu(T, p) and dividing the resul-
tant counts by T such that elements in ϵMu sum to 1. Note
that, for simplicity, in the following we use the formulation
of x in Eq. (1) that sums to T , but the statements and derived
results also hold for ϵ that sums to 1.
Derivation of Eq. 5 in the main paper. Then, we show
how to derive Eq. 5 in the main paper. For simplicity, same
as Sec. 4.2 in the main paper, we illustrate this by focusing a
single vertical slice of the HOI image, i.e., the w-th vertical
slice. For convenience, we first repeat Eq. 5 in the main
paper here:

dk = αkd0 + (1− αk)ϵ
Mu, (3)

where αk = 1 − βk, αk =
∏k

s=1 αs,
ϵMu ∼ PMu

SkT
(SkT, dinit), and Sk =

(1−αj)
2

(
∏k

j=2 αj)2β2
1+(

∏k
j=3 αj)2β2

2+...+β2
k

.

Specifically, as mentioned in Eq. 4 of the main paper,
in each diffusion step k in the forward process, we inject a
small noise to dk−1 as:

dk = (1− βk)dk−1 + βkϵ
Mu, (4)

where ϵMu ∼ PMu
T (T, dinit), and dinit is the w-th vertical

slice in the initialized noisy HOI image. Expanding Eq. (4)



we can get:

dk = αkd0 + (
∏k

j=2 αj)β1ϵ
Mu,1 + (

∏k
j=3 αj)β2ϵ

Mu,2 + ...+ βkϵ
Mu,k,

(5)
where ϵMu,j ∼ PMu

T (T, dinit) denotes the sampled noise
from the Multinomial in the j-th step.

Then, we can simplify Eq. (5) by taking advantage of
the property of Multinomial distribution. Specifically, the
sum of samples from Multinomials with the same prob-
ability p results in a sample from another Multinomial.
In other words, let x3 = x1 + x2, x1 ∼ PMu(T1, p),
and x2 ∼ PMu(T2, p). Then x3 ∼ PMu(T1 + T2, p).
We show this using the characteristic functions of Multi-
nomial distribution. Specifically, note that the character-
istic function of the Multinomial distribution can be rep-
resented as φx(t) = E[eitx] = (

∑N
n=1 pne

itn)T , where
x ∼ PMu(T, p), and i2 = −1. As the sum of two ran-
dom variables is equal to the product of the corresponding
characteristic functions [2], we can get:

φx1+x2(t) = φx1(t)φx2(t)

= (

N∑
n=1

pne
itn)T1(

N∑
n=1

pne
itn)T2

= (

N∑
n=1

pne
itn)T1+T2 ,

= φx3
(t)

(6)

where x3 ∼ PMu(T1 + T2, p). Thus, we can see that
the sum of samples from Multinomials results in a sam-
ple from another Multinomial. However, we also need to
apply scaling factors {βj}kj=1 that re-weights the samples,
which complicates the scenario. We then aim to derive a
good approximation of the linear combination of the sam-
ples. Specifically, ck is constructed as:

ck = (

k∏
j=2

αj)β1x1 + (

k∏
j=3

αj)β2x2 + ...+ βkxk (7)

where xj ∼ PMu(T, p). Then, Lemma 1 is introduced
below:

Lemma 1 If for ck defined in Eq. (7), xj ∼ PMu(T, p)
is independently sampled for j ∈ [1, ..., k], then
the following approximately holds: Sk

1−αk
ck ∼

PMu(SkT, p), where αk =
∏k

s=1 αs, and

Sk = (1−αk)
2

(
∏k

j=2 αj)2β2
1+(

∏k
j=3 αj)2β2

2+...+β2
k

We then provide proof of Lemma 1. First, we take advan-
tage of the property of Multinomial distributions that when
the number of trials T becomes large, the likelihood over
each dimension can be approximated with a Gaussian dis-
tribution [2]. Specifically, for PMu(T, p), the mean and

variance of the approximating Gaussian of dimension m are
Tpm and Tpm(1 − pm) respectively, where pm represents
the corresponding m-th element of the probabilities pro-
vided in p. Thus, by setting T to be large, each dimension
m of xj can be approximated as N (Tpm, Tpm(1− pm)).

Moreover, the convolution of two independent Gaussians
is a Gaussian, with the expectation and variance being the
sum of the two Gaussians, i.e., N (µ1, σ

2
1) ∗ N (µ2, σ

2
2) =

N (µ1 + µ2, σ
2
1 + σ2

2). Thus, the likelihood of each multi-
nomial can be approximated with a Gaussian. Then, pa-
rameters to approximate ck can be found by computing the
mean and variance of each element xj and summing them
up. Specifically, at diffusion step k, the m-th dimension
of ck can be approximated as N

(
E(ck,m),V(ck,m)

)
, with

mean and variance derived as:

E(ck,m) = (

k∏
j=2

αj)β1µ1,m + (

k∏
j=3

αj)β2µ2,m + ...+ βkµk,m

=
(
(

k∏
j=2

αj)β1 + (

k∏
j=3

αj)β2 + ...+ βk

)
Tpm

= (1− αk)Tpm
(8)

V(ck,m) = (
∏k

j=2 αj)
2β2

1σ
2
1,m + (

∏k
j=3 αj)

2β2
2σ

2
2,m + ...+ β2

kσ
2
k,m

=
(
(
∏k

j=2 αj)
2β2

1 + (
∏k

j=3 αj)
2β2

2 + ...+ β2
k

)
Tpm(1− pm)

= ηkTpm(1− pm)

(9)
where ηk =

(
(
∏k

j=2 αj)
2β2

1 + (
∏k

j=3 αj)
2β2

2 + ...+ β2
k

)
.

With the above derived, we then aim to find the Multino-
mial such that its likelihood can be approximated by a Gaus-
sian with mean and variance obtained in Eq. (8) and Eq. (9)
respectively. This means that, a sample uk from this Multi-
nomial should also have expectation and variance as Eq. (8)
and Eq. (9). Specifically, for this to hold, the sampling prob-
ability of the Multinomial should be p as well. Then, to
match the expectation of the Multinomial to Eq. (8), and
design the variance of the Multinomial to Eq. (9), we can
form the Multinomial as PMu(SkT, p), where we scale the
number of trials T by Sk and accordingly scale the sample
uk from the Multinomial by (1−αk)

Sk
. Then, the expecta-

tion of the m-th dimension of (1−αk)
Sk

uk, denoted as τk,m,
is computed as:

E[τk,m] =
(1− αk)

Sk
SkTpm

= (1− αk)Tpm

(10)

which is equal to Eq. (8). The variance of τk,m can also be
computed as:

V[τk,m] = (
1− αk

Sk
)2SkTpm(1− pm)

=
(1− αk)

2

Sk
Tpm(1− pm)

(11)



Then, for Eq. (11) to equal to Eq. (9), we can derive:

Sk =
(1− αk)

2

ηk
(12)

where ηk =
(
(
∏k

j=2 αj)
2β2

1 + (
∏k

j=3 αj)
2β2

2 + ...+ β2
k

)
.

We also remark that the covariance between different di-
mensions of ck and (1−αk)

Sk
uk are approximately equal as

well when setting Sk as Eq. (12) [2]. Overall, consider-
ing all elements (dimensions) in ck, we can approximately
have:

Sk

1− αk
ck ∼ PMu(SkT, p) (13)

where ck = (
∏k

j=2 αj)β1x1+(
∏k

j=3 αj)β2x2+...+βkxk.
This finishes the proof of Lemma 1.

To this point, with the proved Lemma 1, Eq. (5) can be
approximated as:

dk = αkd0 + (1− αk)ϵ
Mu (14)

where ϵMu ∼ PMu
SkT

(SkT, dinit), dinit pro-
vides the sampling probability in each trial, and
Sk =

(1−αj)
2

(
∏k

j=2 αj)2β2
1+(

∏k
j=3 αj)2β2

2+...+β2
k

.

5.3. Derivation of Eq. 6 in the Main Paper
Here we show how to derive q(dk−1|dk, d0) as Eq. 6 in the
main paper. Specifically, from Bayes’ rule we have:

q(dk−1|dk, d0) =
q(dk|dk−1, d0) · q(dk−1|d0)

q(dk|d0)
(15)

Then, based on that the forward process of our diffusion can
be modeled as a Markov chain (shown below in Sec. 5.4),
we have q(dk|dk−1, d0) = q(dk|dk−1) [2]. Thus, the above
equation can be further re-written as:

q(dk−1|dk, d0) =
q(dk|dk−1) · q(dk−1|d0)

q(dk|d0)

=
q(dk|dk−1) · q(dk−1|d0)∑

dk−1
q(dk|dk−1) · q(dk−1|d0)

(16)

We then reformulate Eq. 5 in the main paper (i.e., Eq. (3) in
Supplementary) as:

q(dk|d0) = PMu
SkT (dk−αkd0)

(1−αk)

(dk;SkT, dinit, d0) (17)

Thus, we have q(dk−1|d0) as:

q(dk−1|d0) = PMu
Sk−1T (dk−1−αk−1d0)

(1−αk−1)

(dk−1;Sk−1T, dinit, d0)

(18)
q(dk|dk−1) can also be obtain as:

q(dk|dk−1) = q(dk−1|dk) = PMu
T (dk−(1−βk)dk−1)

βk

(dk−1;T, dinit, dk)

(19)

Then, Eq. 6 in the main paper can be derived, i.e.:

q(dk−1|dk, d0) =
(
γk

(
PMu

T (dk−(1−βk)dk−1)

βk

(dk−1;T, dinit, dk)
)

×
(
PMu

Sk−1T (dk−1−αk−1d0)

1−αk−1

(dk−1;Sk−1T, dinit, d0)
))

(20)

where γk =

(∑
dk−1

((
PMu

T (dk−(1−βk)dk−1)

βk

(dk−1;T, dinit, dk)
)

×
(
PMu

Sk−1T (dk−1−αk−1d0)

1−αk−1

(dk−1;Sk−1T, dinit, d0)
)))−1

.

5.4. Markov Chain Modeling of the Diffusion Pro-
cess

Here we show that the forward process of our diffusion pro-
cess can be modeled as a (discrete-time) Markov chain [2].
Specifically, given Eq. 4 of the main paper (i.e., Eq. (4)
in Supplementary), at the k-th diffusion step, the step-wise
transition from dk−1 to dk can be formulated with a Markov
transition matrix Mk. For simplicity, we flatten the vertical
slides dk and dk−1 to vectors with length (H × 2), then
Mk is of size (H × 2) × (H × 2), where the element cor-
responding to the i-th row and j-th column represents the
probability of the i-th state transitioning to the j-th state.
We also flatten ϵMu in Eq. (4) to a vector of length (H × 2)
accordingly.

Then, according to Eq. (4), we have the transition matrix
Mk at the k-th diffusion step to be:

[Mk]ij =

{
1− βk + βkϵ

Mu
j , if i = j

βkϵ
Mu
j , if i ̸= j

(21)

where [Mk]ij represents the element in the i-th row and j-
th column of the transition matrix, and ϵMu

i denotes the i-th
entry of the (flattened) vector ϵMu.

The above transition matrix is verified by computing
dk−1Mk [2], which should produce dk as formulated in
Eq. (4). According to Eq. (21), we can have the j-th ele-
ment in dk (denoted as dk,j) as:

dk,j = (1− βk + βkϵ
Mu
j )dk−1,j +

∑
i ̸=j

(βkϵ
Mu
j dk−1,i)

= (1− βk)dk−1,j + βk

∑
i

(ϵMu
j dk−1,i)

= (1− βk)dk−1,j + βkϵ
Mu
j ,

(22)
where i ∈ {1, ..., (H × 2)}. The above transition holds for
all (H × 2) elements in dk. Thus, we verify that the above
defined Markov chain is equivalent to Eq. 4 in the main
paper (i.e., Eq. (4) in Supplementary). This shows that, the
forward process of our diffusion process can be modeled as
a Markov chain.
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