
T-CIL: Temperature Scaling using Adversarial Perturbation for Calibration in

Class-Incremental Learning

Supplementary Material

1. Detailed Algorithms

We provide full algorithms of Algorithm 2 (MagSearch)
for magnitude search, and Algorithm 3 (TempOpt) for tem-
perature optimization.

Algorithm 2: The magnitude search algorithm for
perturbation (MagSearch).

Input: Model parameters ω = {w, v}, exemplar set
from new task Mt,new, target temperature
Ttarget, set of feature means µ, tolerance ε

1 ϑlow → 0.0, ϑhigh → 1.0
2 while ϑhigh ↑ ϑlow > ε do

3 ϑ = ωlow+ωhigh

2.0
4 Mω

t,new = { }
5 for (xe, ye) ↓ Mt,new do

6 y
→
e = argmax

c:µc↑µ,c ↓=ye

↔ϖv(xe)↑ µc↔

7 xadv
e = xe ↑ ϑ sign(↗xeLCE(xe, y

→
e; ω))

8 Mω
t,new → Mω

t,new ↘ {(xadv
e , ye)}

9 T = TempOpt(Mω
t,new, ω)

10 if T < Ttarget then

11 ϑlow → ϑ

12 else

13 ϑhigh → ϑ

Output:
ωlow+ωhigh
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Algorithm 3: The temperature optimization algo-
rithm (TempOpt).

Input: Dataset D, model parameters ω
1 T → 1 ; // Initialize T

2 while not converge do

3 for (x, y) ↓ D do

4 Update T to minimize LCE(x, y; ω, T )

Output: T

2. Computational Complexity Analysis

In this section, we analyze the computational complexity of
T-CIL. T-CIL consists of four main components: temper-
ature optimization, feature means calculation, perturbation
magnitude search, and memory update. The complexity of
temperature optimization is O(M), where M represents the

memory size, since we optimize the temperature on the set
of perturbed exemplars for memory. Similarly, calculating
feature means requires O(M) operations. The adversarial
search process takes O(M) time (with a constant factor k
for perturbation iterations), and applying perturbations also
has a complexity of O(M). Therefore, the overall compu-
tational complexity of T-CIL for a single incremental task
is also O(M).

As conventional class-incremental learning approaches
operate with O(T (Nnew+M)) complexity, T-CIL maintains
a lighter O(M) complexity, where T is the number of tasks,
Nnew is the number of new task data points, and M is the
memory size. Consequently, integrating T-CIL with exist-
ing class-incremental frameworks preserves the asymptotic
computational efficiency, as M remains constant and sub-
stantially less than Nnew. With a small overhead, T-CIL is
an efficient approach that can be practically combined with
existing class-incremental learning methods.

3. Experiments

3.1. Inapplicability of PerturbTS on the CIFAR-10

The reason PerturbTS [37] is not applicable on the CIFAR-
10 in a class-incremental learning setup is that, with only
two new classes per task, the model quickly fits to the data,
making it impossible to achieve the designated accuracy re-
duction through perturbation. This overfitting prevents the
perturbation magnitude optimization from converging.

3.2. Detailed Experimental Settings

To obtain the best calibration performance of T-CIL with the
minimal impact on accuracy, we use a new-task validation
set whose size varies depending on the class-incremental
learning technique and dataset used. The new-task valida-
tion set sizes are listed in Table 4. The effect of the new-task
validation set size will be explained later.

Class-incremental learning techniques require specific
training parameters. For both EEIL [3] and WA [45], we
set the knowledge distillation temperature to 2. EEIL and
DER [39] incorporate a balanced fine-tuning phase. For this
phase, we train the model for 30 epochs with 10 tasks and
100 epochs with 20 tasks.

After model training, we store a subset of new-task data
used for training to the memory by uniformly sampling ex-
amples from each class. As the memory size is fixed, we
remove some existing exemplars to accommodate the new-
task data.



Table 4. The size of the new-task validation set for each class-
incremental learning method and dataset used in the main experi-
ments.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

ER 500 500 100
EEIL 300 300 200
WA 100 500 100
DER 500 1000 100

We make a fair comparison between post-hoc calibration
methods including T-CIL versus vanilla class-incremental
learning techniques in terms of training data. In particular,
whenever we take a (minimal) validation set from the train-
ing data, we only train models on the remaining training
data. In comparison, the vanilla techniques always train on
the full training set.

3.3. Additional Experiments

Full experimental results We evaluate T-CIL against five
calibration baselines (Cal method) in combination with four
class-incremental learning techniques (CIL method) across
three datasets. Table 5 presents a comprehensive compari-
son of all possible combinations between post-hoc calibra-
tion methods and class-incremental learning techniques.

Overall, T-CIL outperforms the five calibration baselines
when integrated with four existing class-incremental learn-
ing techniques across three datasets. Notably, T-CIL consis-
tently shows low calibration errors compared to all the base-
lines. While PerturbTS achieves the best calibration perfor-
mances when combined with EEIL and WA on the Tiny-
ImageNet, its effectiveness is inconsistent. In addition, Per-
turbTS is not applicable to the CIFAR-10 dataset and ex-
hibits unusually high calibration errors on the CIFAR-100
dataset. In contrast, T-CIL demonstrates robust and superior
performances across all experimental settings, consistently
achieving lower calibration errors regardless of the underly-
ing class-incremental learning technique. This comprehen-
sive evaluation validates that T-CIL is a more reliable and
versatile approach for addressing calibration challenges in
class-incremental learning scenarios.

Expansion of incremental tasks We evaluate the per-
formance when expanding incremental tasks from 10 to
20 tasks, with results presented in Table 6. For all class-
incremental learning techniques, we use 100 samples from
each new task as a validation set on both CIFAR-100 and
Tiny-ImageNet.

The results show that T-CIL outperforms most vanilla
class-incremental learning techniques, with WA being the
only exception. As explained in Section 6.2, WA scales the
output logits corresponding to the new task only after train-
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Figure 6. ECE (%) comparison after training each task on the
CIFAR-100 among existing class-incremental learning techniques,
their combinations with T-CIL, and the optimal TS. The existing
techniques include: (a) ER, (b) EEIL, (c) WA, and (d) DER.

ing. This scaling of specific logits may not align with the
insight behind T-CIL’s perturbation direction policy. Never-
theless, T-CIL significantly improves the calibration perfor-
mance of poorly calibrated class-incremental learning tech-
niques.

Varying size of memory We analyze how memory size
affects the ECE of T-CIL compared to the vanilla method
without calibration on the CIFAR-100 and Tiny-ImageNet,
as shown in Figure 7. Using ER as our base class-
incremental learning technique, we experiment with mem-
ory sizes of 500, 1,000, 1,500, and 2,000 samples for
CIFAR-100, and 1,000, 2,000, 3,000, and 4,000 samples
for Tiny-ImageNet. We use a new-task validation set sized
of 100.

Our results demonstrate that T-CIL consistently achieves
significantly lower ECE than the vanilla method across all
memory sizes. Although smaller memory sizes lead to de-
creased model accuracy and consequently worse calibration
performance, T-CIL with just 500 memory samples still out-
performs the vanilla method using 2,000 samples in terms
of calibration quality.

Varying size of new-task validation set We vary the size
of the new-task validation set and evaluate ECE and accu-
racy on CIFAR-100, using ER as a base class-incremental
learning technique. We present the results in Figure 8 and
Table 7.

Figure 8 demonstrates that T-CIL is effective even with
a small-sized validation set. As the validation set size in-
creases, ECE decreases. However, increasing validation set
size leads to accuracy drop due to the smaller training set



size. These trends in ECE and accuracy indicate that T-CIL
only requires small new-task validation set for calibrating
the model effectively while minimizing the impact on accu-
racy.

Additional ECE progressions We present the progres-
sion of ECE across tasks on CIFAR-100 and Tiny-ImageNet
of vanilla, T-CIL, and Optimal TS when combined with four
class-incremental learning techniques in Figure 6 and Fig-
ure 9. These figures show the progression of ECE through-
out tasks, where we compare T-CIL against an ideal sce-
nario where we run TS on the test set of both old and new
tasks and thus obtain the best achievable calibration per-
formance (called “Optimal TS”). When combined with var-
ious class-incremental learning techniques, T-CIL consis-
tently demonstrates strong calibration performance across
all tasks, with calibration errors approaching Optimal TS’s
ideal performance.



Table 5. Performance comparison between T-CIL and five baselines when integrated with four class-incremental learning techniques on
three datasets.

CIFAR-10 CIFAR-100 Tiny-ImageNet

CIL Method Cal Method Acc. (→) ECE (↑) AECE (↑) Acc. (→) ECE (↑) AECE (↑) Acc. (→) ECE (↑) AECE (↑)

ER [6]

Vanilla 65.61± 0.49 28.16± 0.33 28.12± 0.32 56.51± 0.37 27.66± 0.29 27.64± 0.28 31.95± 0.54 32.56± 0.36 32.55± 0.35

TS [13] 65.86± 0.09 23.97± 0.82 23.92± 0.81 56.25± 0.62 16.28± 0.32 16.22± 0.37 31.48± 0.39 19.44± 0.75 19.44± 0.75

ETS [44] 65.86± 0.09 22.46± 1.20 22.39± 1.21 56.25± 0.62 16.83± 0.47 16.80± 0.49 31.48± 0.39 19.81± 0.65 19.83± 0.65

IRM [44] 65.86± 0.09 22.09± 1.73 21.83± 1.73 56.25± 0.62 17.50± 0.64 17.39± 0.61 31.48± 0.39 19.77± 0.72 19.73± 0.78

PerturbTS [37] n/a n/a n/a 56.25± 0.62 16.49± 2.19 16.49± 2.18 31.48± 0.39 10.60± 0.60 10.58± 0.61

T-CIL 65.86± 0.09 17.70± 2.60 17.64± 2.59 56.25± 0.62 5.74± 0.53 5.75± 0.50 31.48± 0.39 8.12± 0.38 8.12± 0.41

EEIL [3]

Vanilla 77.67± 0.74 15.48± 0.75 15.45± 0.74 60.61± 0.33 21.96± 0.29 21.94± 0.28 37.44± 0.85 29.69± 0.36 29.68± 0.36

TS 76.91± 1.27 10.20± 0.94 10.16± 0.93 60.74± 0.37 13.25± 0.60 13.14± 0.55 37.16± 0.91 13.16± 0.76 13.15± 0.73

ETS 76.91± 1.27 10.31± 0.71 10.29± 0.72 60.74± 0.37 13.89± 0.47 13.83± 0.42 37.16± 0.91 13.52± 0.73 13.51± 0.71

IRM 76.91± 1.27 10.51± 0.59 10.32± 0.53 60.74± 0.37 15.20± 0.48 15.09± 0.51 37.16± 0.91 14.66± 0.76 14.69± 0.76

PerturbTS n/a n/a n/a 60.74± 0.37 40.34± 3.84 40.34± 3.84 37.16± 0.91 8.81± 0.59 8.81± 0.61

T-CIL 76.91± 1.27 10.49± 2.34 10.46± 2.32 60.74± 0.37 10.30± 1.10 10.22± 1.06 37.16± 0.91 15.58± 0.76 15.56± 0.76

WA [45]

Vanilla 73.06± 0.57 19.10± 0.50 19.07± 0.51 64.34± 0.40 8.89± 0.64 8.86± 0.63 39.66± 0.88 10.97± 0.41 10.96± 0.43

TS 72.75± 0.47 18.22± 0.69 18.19± 0.69 64.02± 0.06 5.93± 0.24 5.88± 0.28 38.59± 0.44 13.24± 1.08 13.28± 1.09

ETS 72.75± 0.47 17.96± 0.67 17.92± 0.69 64.02± 0.06 5.77± 0.39 5.75± 0.42 38.59± 0.44 13.01± 1.12 13.06± 1.12

IRM 72.75± 0.47 18.03± 0.94 17.58± 0.97 64.02± 0.06 6.61± 0.47 6.51± 0.46 38.59± 0.44 10.88± 0.46 10.87± 0.48

PerturbTS n/a n/a n/a 64.02± 0.06 46.55± 2.20 46.54± 2.20 38.59± 0.44 8.63± 1.07 8.61± 1.10

T-CIL 72.75± 0.47 15.61± 0.23 15.58± 0.22 64.02± 0.06 3.87± 0.52 3.84± 0.55 38.59± 0.44 11.43± 1.00 11.46± 1.04

DER [39]

Vanilla 74.53± 0.48 21.81± 0.46 21.78± 0.47 69.98± 0.69 22.38± 0.37 22.35± 0.35 46.62± 2.84 39.00± 1.72 38.99± 1.72

TS 74.93± 0.35 17.27± 0.37 17.25± 0.37 69.98± 0.58 6.16± 0.25 6.04± 0.26 47.79± 0.47 11.29± 0.66 11.26± 0.66

ETS 74.93± 0.35 16.82± 0.28 16.79± 0.29 69.98± 0.58 6.12± 0.36 6.03± 0.37 47.79± 0.47 7.83± 0.63 7.86± 0.58

IRM 74.93± 0.35 17.04± 0.45 16.80± 0.48 69.98± 0.58 7.88± 0.33 8.03± 0.40 47.79± 0.47 10.47± 0.61 11.01± 0.61

PerturbTS n/a n/a n/a 69.98± 0.58 52.21± 5.97 52.21± 5.97 47.79± 0.47 15.56± 1.18 15.55± 1.18

T-CIL 74.93± 0.35 12.70± 1.35 12.68± 1.34 69.98± 0.58 4.37± 0.59 4.34± 0.60 47.79± 0.47 6.91± 0.86 6.90± 0.84

Table 6. T-CIL performance combined with four existing class-incremental learning techniques on two datasets, each containing 20
incremental tasks.

CIFAR-100 Tiny-ImageNet

Method Acc. (≃) ECE (⇐) AECE (⇐) Acc. (≃) ECE (⇐) AECE (⇐)

ER 54.81± 0.70 28.95± 0.84 28.93± 0.84 30.43± 0.51 34.90± 0.16 34.88± 0.16

ER+T-CIL 54.48± 1.95 7.08± 0.49 7.07± 0.46 30.62± 0.29 10.72± 0.88 10.79± 0.86

EEIL 55.36± 1.19 25.17± 0.84 25.15± 0.84 33.54± 0.60 28.89± 0.27 28.89± 0.27

EEIL+T-CIL 55.86± 0.93 14.38±1.34 14.35± 1.35 34.22± 0.18 24.45± 0.67 24.46± 0.67

WA 59.30± 0.64 7.39± 0.35 7.37± 0.35 35.99± 0.97 10.06± 0.95 10.06± 0.99

WA+T-CIL 58.89± 0.67 7.45± 0.72 7.47± 0.72 36.80± 0.42 19.56± 0.47 19.57± 0.48

DER 68.90± 0.31 24.05± 0.45 24.02± 0.45 48.63± 0.75 42.44± 0.56 42.43± 0.56

DER+T-CIL 68.84± 0.61 5.78± 0.92 5.75± 0.91 48.33± 1.31 5.90± 0.97 5.91± 0.96
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Figure 7. T-CIL performance when varying the memory size on (a) CIFAR-100 and (b) Tiny-ImageNet.

Figure 8. T-CIL performance when varying the size
of the new-task validation set on the CIFAR-100.

Table 7. T-CIL performance when varying the size of the new-task validation
set on the CIFAR-100.

Val size 100 300 500 700 1000

ECE (%) 6.94± 1.02 5.91± 0.56 5.74± 0.53 5.81± 0.95 5.33± 0.31

Acc (%) 56.97± 0.65 56.95± 0.34 56.25± 0.62 56.55± 0.80 56.08± 0.57
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Figure 9. ECE progression after training each task on the Tiny-ImageNet among existing class-incremental learning techniques, their
combinations with T-CIL, and the optimal TS. The existing techniques include: (a) ER, (b) EEIL, (c) WA, and (d) DER.


