
BIMBA: Selective-Scan Compression for Long-Range Video Question Answering

Supplementary Material

Our supplementary materials contain additional imple-
mentation details (Section S1), additional quantitative re-
sults (Section S2), and qualitative results (Section S3).

S1. Additional Implementation Details

BIMBA-LLaVA is based on the image-pretrained MLLM
LLaVA-NeXT [44], which utilizes CLIP [59] as the vision
encoder and Vicuna-7B [11] as the LLM. It processes 64
video frames at a resolution of 336 ⇥ 336, dividing each
frame into 14⇥14 patches, yielding 64⇥24⇥24 spatiotem-
poral tokens. These tokens are compressed to 16⇥ 12⇥ 12
before being fed into the LLM. In this variant, the vision
encoder remains frozen, while the multimodal projector (a
linear layer), spatiotemporal token selector, and LLM are
trained using LoRA [23].
BIMBA-LLaMA is based on the image-pretrained MLLM
LLaMA-3.2 [52], incorporating Meta-CLIP [74] as the vi-
sion encoder and LLaMA-3.2-LLM-8B as the LLM. It pro-
cesses 64 video frames at a higher resolution of 560⇥ 560,
dividing each frame into 14 ⇥ 14 patches, resulting in
64⇥ 40⇥ 40 spatiotemporal tokens. These are compressed
to 16 ⇥ 20 ⇥ 20 before being passed to the LLM. Unlike
the other variants, both the vision encoder and multimodal
projector remain frozen, with only the spatiotemporal token
selector and LLM trained using LoRA.
Training Details. We employ standard cross-entropy loss
for autoregressive text generation and train the model for 1
epoch with a batch size of 128 and a learning rate of 2e-
5. The AdamW [48] optimizer is used, along with a cosine
learning rate scheduler and a warm-up ratio of 0.03.

S2. Additional Quantitative Results

S2.1. Performance as a Function of Video Length

In this section, we evaluate the performance of our model
on videos of varying lengths from the NextQA [73] dataset,
with results presented in Figure S1. Figure S1 (left)
shows the relative performance improvement over the
PLLaVA [75] baseline for different video durations. We
observe that as video duration increases, the relative per-
formance improvement over the baseline becomes more
pronounced. This demonstrates the effectiveness of our
proposed Mamba-based token compression technique com-
pared to pooling-based methods, particularly for long-range
videos.

Similarly, the Figure S1 (right) illustrates the rela-
tive performance improvement of BIMBA-LLaVA over the
LLaMA-3.2 (video) baseline for varying video durations.

Here, too, we observe that the relative performance gap
widens as video duration increases, showcasing the advan-
tages of our model over the vanilla LLaMA-3.2 (video)
baseline, which does not use any compression mechanism.

S2.2. Computation Cost of BIMBA-LLaMA

In this section, we compare the computational cost of our
model with other baselines in terms of GPU memory usage
(Figure S2, left) and runtime (Figure S2, right). Our analy-
sis shows that self-attention incurs quadratic costs for both
memory and runtime, resulting in out-of-memory errors for
inputs longer than 8 frames (12,800 tokens). In contrast, all
other methods maintain low memory and runtime costs. De-
spite having computational efficiency similar to that of the
other baselines, our method achieves superior performance,
as demonstrated in the previous section.

S3. Qualitative Results

Our qualitative results include open-ended video question
answering (Section S3.1), multiple choice video question
answering (Section S3.2), importance of question condi-
tioning (Section S3.3), and significance of bidirectional
Mamba and interleaved queries (Section S3.4).

S3.1. Open-Ended Video Question Answering

In Figure S3, we provide examples of our model’s perfor-
mance in open-ended video question answering. The re-
sults showcase the model’s ability to handle diverse video
understanding tasks, including generating detailed descrip-
tions, recognizing objects and interactions, identifying fine-
grained activities, and inferring high-level goals. These
examples illustrate the model’s effectiveness in general-
purpose video understanding.

S3.2. Multiple Choice Video Question Answering

We show qualitative examples of video question answering
of our model and other baselines on NextQA (Figure S4)
and EgoSchema (Figure S5) datasets. Both BIMBA-LLaVA
and BIMBA-LLaMA generate the correct answers while
other baselines fail, demonstrating the effectiveness of our
model for this task.

S3.3. Importance of Question Conditioning

In Figure S6, we showcase example predictions from our
model with and without question-conditioned token selec-
tion on the NextQA (Figure S6 (a)) and EgoSchema (Fig-
ure S6 (b)) datasets. In both cases, incorporating question
tokens into our spatiotemporal token selector enables the
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(a) LLaVA Backbone on NeXT-QA.
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(b) LLaMA Backbone on NeXT-QA.
Figure S1. Relative performance improvement of (left) BIMBA-LLaVA over PLLaVA baseline and (right) BIMBA-LLaMA over LLaMA-
3.2 (video) baseline for different video durations on NextQA dataset. Our model achieves larger gains as the video length increases.
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(a) Memory Usage of LLaMA-3.2 Backbone.
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(b) Runtime of LLaMA-3.2 Backbone.
Figure S2. Computation cost of BIMBA-LLaMA and baseline models in terms of memory usage (left) and runtime (right). Self-attention
runs out of memory for longer sequences. All other baselines, including our model, maintain low memory and runtime.

model to produce the correct answer. This exhibits the abil-
ity of our token selector to leverage question tokens effec-
tively, selecting relevant visual tokens to enhance question-
answering performance.

S3.4. Bidirectional Mamba and Interleaved Queries

In this section, we visualize the effect of bidirectional
Mamba and interleaved queries in Figure S7. We calcu-
late a response for each frame as follows: first, we take the
hidden states of each token after the spatiotemporal token
selector and compute a dot product with the query tokens.
Then, we apply max pooling to the dot product values of to-
kens within each frame to obtain a response for that frame.
This response value reflects the weight of each frame in the
compressed query representations.

Figure S7 (a) shows that using bidirectional scans and
interleaved queries enables our model to capture critical in-
formation across the entire video and generate the correct
answer. In contrast, (b) with bidirectional Mamba and stan-
dard queries, the model focuses mainly on the beginning

and end of the video, and (c) with unidirectional Mamba
and standard queries, the model focuses only on the latter
part of the video. Both designs are suboptimal, as they miss
critical information and produce incorrect answers.



(a) Example 1 of open-ended video question answering.

(b) Example 2 of open-ended video question answering.

Figure S3. Qualitative Results on Open-Ended Video Question Answering. Our model demonstrates the ability to answer a wide range of
questions about videos, including detailed descriptions, high-level goals, and fine-grained activities.



Figure S4. Qualitative Results on NextQA. Our model generates the correct answer while both PLLaVA and LLaMA-3.2 (video) baselines
fail.



Figure S5. Qualitative Results on EgoSchema. Our model generates the correct answer while both PLLaVA and LLaMA-3.2 (video)
baselines fail.



Figure S6. Qualitative Results on Question Conditioned Token Selection on (a) NextQA and (b) EgoSchema datasets. Incorporating
question tokens into our spatiotemporal token selector leads to the correct answer in both examples. Using the information from the
questions allows our spatiotemporal selection module to focus on the most relevant video parts for answering the question.



Figure S7. Visualization of Bidirectional Mamba and Interleave Queries. Utilizing bidirectional Mamba and interleaved queries leads to
the correct answer, while the unidirectional Mamba and standard queries fail.
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