PatchDEMUX: A Certifiably Robust Framework for Multi-label Classifiers
Against Adversarial Patches

Supplementary Material

A. Certification Robustness Proofs

A.l. Baseline certification correctness

In this section, we provably demonstrate robustness for our
baseline certification procedure. Specifically, we prove The-
orem 1, which ensures correctness of the bounds returned by
Algorithm 2. For convenience, we re-state the theorem.

Theorem 1 (Algorithm 2 Correctness). Suppose we have an im-
age data point (x,y) € X x Y, a single-label CDPA SL-DEF,
and a multi-label classification model F: X —). Then, under
the patch threat model Sx r the bounds returned by Algorithm 2
are correct.

Proof. We first demonstrate that classes included in TPy e
will be guaranteed correctness. Consider an arbitrary class
i* € {1,2,...,c} with label y[i*] = 1. If this class is in-
cluded in T'Fjyer, then we must have k[i*] = 1 (i.e., line
9 in Algorithm 2). This implies that on line 5 we must have
SL-CERT(i+),01(x,y[i*],R) = 1. Now consider when Algo-
rithm 1 reaches index i* € {1,2,...,¢} in the for loop on line 3.
Because the datapoint (x,y[i*]) was certifiable, by Definition 2
we will have

SL-INFER[]F[,'*],U] (X/) =1 ¢ Sx,R

This implies that every class accounted for in 1" Py, Will
be successfully recovered by Algorithm 1 regardless of the
attempted patch attack.

Next, we demonstrate that classes included in F'Nype, Will
not be guaranteed correctness. Consider an arbitrary class
i* € {1,2,...,c} with label y[¢*] = 1. In this case we will
have k[i*] =0, and thus classes included in F' N, will have
SL-CERTipj;+),0)(x,y[1*],R) =0. Now consider when Algo-
rithm 1 reaches index i* € {1,2,...,c} in the for loop on line 3.
By Definition 2 it is possible that

HXIESX;R | SL-INFER[]F[l*],U] (X’):O
Essentially, in the worst-case scenario these classes might be
mispredicted and be false negatives. Thus, none of the classes
included in F"Nyppe, can be guaranteed correctness. Because
every class with y[i*] = 1 will be accounted for by either
T Piower of F'Nypper (mutually exclusive), we conclude that
T P,ower Will be the correct lower bound for objects recovered
and F'Nypper will be the correct upper bound for objects missed.

The correctness of the [P, bound can be shown in a
similar fashion, albeit by considering classes with y[i*]=0.

O

A.2. Location-aware certification correctness

In this section we demonstrate the correctness of our novel
location-based certification method. To do so, it is helpful to
use the following lemma.

Lemma 1 (Algorithm 3 Tightness). Given that we have de-
rived a bound on F'N using the technique from Algorithm 2,
Algorithm 3 will return a new bound F Ny, < F'N.

Proof. We will show that F'N,,.,, provides a tighter bound (i.e.,
the inequality F'N,e,, < F'N is true). To see this, we note as
per lines 13 and 14 of Algorithm 3 that the worst-case sum
will occur if some patch location is vulnerable for every false
negative. Because summation is done over the set of false
negatives, this implies the worst-case sum is F'N. O

We also provide a formal definition for the concept of a
vulnerability status array; recall that this array extends the cer-
tification procedure for a single-label CDPA (Sec. 3.4.1). We
leverage similar notation as Eq. (2).

Definition 3 (Vulnerability status array). Suppose we have data-
point (X,y), a single-label classifier Fs: X —{1,2,...,c}, a certi-
fication procedure S L-C E RT with security parameters o from
a single-label CDPA, and patch locations R. Then we define
the vulnerability status array X := SL-CERTr_,(x,y,R) €
{0,1MR1 such that if Xx] =1 for a patch location r € R then’

SL-INFER,_ 4 (rox+(1l-r)ox')=y VX' eX

Essentially, the vulnerability status array A denotes the certifica-
tion status of individual patch locations r € R.

We can now prove Theorem 2. For convenience we re-state
the theorem.

Theorem 2 (Algorithm 3 Correctness). Suppose we have an im-
age data point (x,y) € X XY, a single-label CDPA SL-DEF,
and a multi-label classification model F: X — Y. If SL-CERT
returns the vulnerability status array X\ associated with each
r €'R, then under the patch threat model Sy r the bounds from
Algorithm 3 are correct and stronger than Algorithm 2.

Proof. We will demonstrate the correctness and tightness of the
new bound F'N,,.,, proposed in Algorithm 3. We first note as
per Lemma 1 that F'N,,.,, < F'N; this ensures that the new
bound will be stronger than Algorithm 2. In the case with equal-
ity F'Nyey = F'N, correctness is guaranteed by Theorem 1. We
thus focus on the case with strict inequality F' N, ¢, < F'N.
Define rqope € R as the patch location which induces the
maximum number of false negatives on line 14 of Algorithm 3.

SFor the term A[r] =1 we slightly abuse notation and use r to refer to the
index associated with the patch location

By assumption, a total of F'N — F'N,,,, >0 false negatives will
have contributed a value of 0 to the sum fnT otal[rops] on line
13. Consider an arbitrary such class i* € {1,2,...,c}. Because the
fnCertFails value for this class at patch location repy is 0, on
line 10 we must have for A:=SL-CERTig|;+)] (X,y[i*],R)

A[ropt} =1
As per Definition 3, this means that we will have
SL-INFER[]F[,L*])G.] (r0pt oxX+ (1 —I‘Opt) OX/) =1 \V/X/ c X

In other words, SL-IN F E R will be robust against any patch
attack contained in location rqpt € R. Because the patch must
be placed at the optimal location rqpt, this implies that Algo-
rithm | will return the correct prediction for class ¢* as desired.
Overall, each of the F'IN — F'N,,.., classes will now be certified
true positives instead of false negatives, and thus the new bounds
from Algorithm 3 will be correct. O

B. Double-masking Algorithm from Patch-
Cleanser

In this section, we provide a brief outline of the double-masking
algorithm from the PatchCleanser defense and how it integrates
into the PatchDEMUX framework; recall from Sec. 4.1 that
PatchCleanser is the current SOTA single-label CDPA. For more
details, we direct the reader to the original reference by Xiang
etal. [33].

B.1. Double-masking overview

At a glance, the double-masking algorithm works by curating a
specialized set of masks, M C {0,1}** k. to recover the output
label y € {1,2,...,c} for certifiable input images x € X’ [33].
More specifically, these masks satisfy the following R-covering
property from Xiang et al. [33].

Definition 4 (R-covering). A mask set M is R-covering if, for
any patch in the patch region set R, at least one mask from the
mask set M can cover the entire patch, i.e.,
VreR,ImeM st mlij] <r[i,j],V(i,))

Here R refers to the set of patch locations from Eq. (2), and
M represents binary matrices where elements inside the mask
are 0 and elements outside the mask are 1 [33]. Given an input
image size m; x ny, an upper estimate on patch size® p, and
number of desired masks k; X ko, a procedure from Xiang
et al. [33] can readily create a mask set M with stride length
51 X s9 and mask size m, X mo which is R-covering. The patch
size p and mask number k; X ko serve as security parameters,
where the former corresponds to the threat level of R (i.e., larger
patches will necessitate larger masks) and the latter represents
a computational budget (i.e., more masks will require more
checks to be performed) [33].

6PatchCleanser provides an option to specify the patch size for each axis;
we simplify the notation here for convenience

Once the R-covering mask set M is generated, the double-
masking inference procedure removes the patch by selectively
occluding the image x € X with mask pairs mg,m; € M x
M. Correctness is verified through the associated certification
procedure, which checks if predictions on x are preserved across
all possible mask pairs [33].

B.2. Double-masking inference procedure

Algorithm 4 The double-masking inference procedure from
PatchCleanser [33]

Input: Image x € X, single-label classifier F, : X —
{1,2,...,c}, R-covering mask set M
Output: Prediction § € {1,2,...,c}

1: procedure DOUBLEMASKINGINFER(X,F, M)

2: Umag,Pdis <—MASKPRED(x,IF, M) > First-round
3: if Py =0 then

4: return §,,,, > Case I: agreed prediction
5: end if

6: for each (mgis,Jdis) € Pais do > Second round
7: /P’ < MASKPRED(xomgis,[Fs,/M)

8: if P’ =() then

9; return 9 > Case II: disagreer pred.
10: end if
11: end for
12: return g, > Case III: majority prediction
13: end procedure

Input: Image x € X, single-label classifier Fs : X' —
{1,2,...,c}, R-covering mask set M
Output: Majority prediction gy, € {1,2,...,c}, disagreer

masks Py
14: procedure MASKPRED(x,F ¢, M)
15: P—0 > A set for mask-prediction pairs
16: for me M do > Enumerate every mask m
17: y<F(xom) > Evaluate masked prediction
18: P+PU{(m,5)} > Update set P
19: end for

> Majority
> Disagreers

200 Ymay < argmax,. [{(m,g) € Plg=y"}|
21: Pdis%{(mvg)elplg#@maj}

22: return gmaj “Puis

23: end procedure

The double-masking inference procedure from Xiang et al.
[33] is outlined in Algorithm 4. It works by running up to two
rounds of masking on the input image x € X. In each round, the
single-label classifier Fs: X — {1,2,...,c} is queried on copies
of x which have been augmented by masks m € M [33].

o First-round masking: The classifier runs Fs(mox) for every
mask m € M (line 2). If there is consensus, this is returned
as the overall prediction (line 4); the intuition is that a clean
image with no patch will be predicted correctly regardless of
the mask present [33]. Otherwise, the minority/“disagreer”
predictions trigger a second-round of masking (line 6). This

is done to determine whether to trust the majority prediction
imag or one of the disagreers [33].

* Second-round masking: For each disagreer mask mg;s, the
classifier runs F(x o mgjsom) for every mask m € M to
form double-mask predictions [33]. If there is consensus,
the disagreer label §4;s associated with mg;s is returned as
the overall prediction (lines 6 — 10). The intuition is that
consensus is likely to occur if mg;s successfully covered the
patch [33]. Otherwise, myg;s is ignored and the next available
disagreer mask is considered; the assumption here is that
my;s failed to cover the patch [33]. Finally, if none of the
disagreer masks feature consensus the majority label 4,
from the first-round is returned instead (line 12).

A key property of this method is that it is architecture agnostic
and can be integrated with any single-label classifier [33].

B.3. Double-masking certification procedure

Algorithm 5 The double-masking certification procedure from
PatchCleanser [33]

Input: Image x € X, ground-truth y € {1,2,...,c}, single-
label classifier F : X — {1,2,...,c}, patch locations R,
R-covering mask set M
Output: Overall certification status of (x,y), vulnerability
status array A€ {0,1}M

1: procedure DOUBLEMASKINGCERT(X,y,Fs, R, M)
2: certVal <1
3 A [1M
4; if M is not R-covering then > Insecure mask set
5: return 0, [0] M
6 end if
7 for every (mg,m;) e M x M do
8 i/ «+Fs(xomgomy;) > Two-mask prediction
9: if 4/ £y then
10: certVal<0 > Input possibly vulnerable
11: Almgl,A[my]<+0,0 > Vulnerable masks
12: end if
13: end for
14: return certVal,\

15: end procedure

The double-masking certification procedure from Xiang et al.
[33] is outlined in Algorithm 5; we extend the original version to
additionally return a vulnerability status array . It works by first
ensuring that the mask set M is R-covering (line 4); otherwise,
no guarantees on robustness can be made. Then, during the for
loop on lines 7— 13 the procedure computes F(xomgomy;)
for every possible mask pair mg,m; € M x M [33]. If all
of the predictions are the label y, then (x,y) is certifiable and
certVal is set to 1; recall from Definition 2 that this implies that
the inference procedure Algorithm 4 will be correct regardless
of an attempted patch attack. Otherwise, certV al is set to 0 and
the A array is updated to reflect vulnerable points.

The correctness of certVal is guaranteed by the following
theorem. Essentially, if predictions across all possible mask pairs

are correct, it ensures that each of the three cases in Algorithm 4
will work as intended [33].

Theorem 3. Suppose we have an image data point (x,y), a
single-label classification model Fs : X — {1,2,...,c}, a patch
threat model Sx r, and a R-covering mask set M. If Fs(xo
moomy)=y for all mg,my € M x M, then Algorithm 4 will
always return a correct label.

Proof. This theorem is proved in Xiang et al. [33]. O

We next consider the vulnerability status array A € {0,1}M
returned by Algorithm 5. Notice that the length of the array
is | M rather than |R|; this is a helpful consequence of the R-
covering property of the mask set M, which ensures that every
patch location r € R will be contained in at least one of the
masks m € M. As such, an implementation-level abstraction
is possible for PatchCleanser where each element A[m] sum-
marizes the vulnerability status for all patch locations contained
within the mask m € M. The correctness of this construction
can be demonstrated through the following lemma.

Lemma 2. Suppose we have an image data point (X,y), a
single-label classification model F: X —{1,2,...,c}, a paich
threat model Sx r, and a R-covering mask set M. Then the
array A € {0,1}‘M‘ returned by Algorithm 5 will be a valid
vulnerability status array that satisfies Definition 3.

Proof. Define R* C'R as the set of patch locations contained
in an arbitrary mask m* € M. To demonstrate the validity
of A, we need to show that A\lm*] = 1 implies Algorithm 4
will be protected from all attacks located in R*. To do so, we
first note that we will only have Alm*] =1 in Algorithm 5 if

Fy(xom* om) =y for all m € M; otherwise, Alm*] would

have been marked with 0 at some point.

We can use this robustness property to guarantee correctness
in Algorithm 4. Suppose we have an arbitrary patch attack
with a location in R* and that Ajm*] = 1. In the first-round
masking stage the attack will be completely covered by the mask
m* (due to the R-covering property) and form the masked
image xom™ € X. Note that this is the same as the image
xom*om* € X; therefore, the robustness property from above
will guarantee that F;(xom*) =y. We have thus shown that
the correct prediction will be represented at least once in the
first-round, leaving three possible scenarios.
¢ Scenario #1 (consensus): In this scenario, the classifier returns

the correct prediction y for every first-round mask. Then, line

4 of Algorithm 4 will ensure that y is correctly returned as the

overall prediction.

* Scenario #2 (majority of masks are correct): In this scenario,
the classifier returns the correct prediction y for the majority
of first-round masks. The set of disagreer masks, M 4;s C M,
will thus run a second round of masking. This eventually
requires computing [F's (xomgisom*) for each mgjs € M g;s.
By leveraging symmetry and the robustness property from
earlier, these are all guaranteed to return the correct prediction
y. Therefore, none of the disagreer masks will have consensus
in the second-round, and line 12 of Algorithm 4 will ensure
that y is correctly returned as the overall prediction.

* Scenario #3 (minority of masks are correct): In this scenario,
the classifier returns the correct prediction y for a minority of
first-round masks. This implies that m* will be a disagreer
mask. During the second round of masking, the robustness
property from earlier will ensure that Fy(x om*om) =y
for each m € M. Therefore, we will have consensus in
the second round of m*. Because disagreers with incorrect
predictions will fail to have consensus (i.e., using the logic
from Scenario #2), line 9 of Algorithm 4 will ensure that ¥ is
correctly returned as the overall prediction.

Opverall, we conclude that Algorithm 4 will return the correct
prediction y. We have thus shown that Alm*] = 1 implies
Algorithm 4 will be protected from any arbitrary patch attack
located in R*, as desired. O

B.4. Integration with PatchDEMUX

To integrate PatchCleanser into the PatchDEMUX framework,
we first generate a R-covering set of masks M; the mask set
M essentially serves as a holistic representation of the secu-
rity parameters o. We then incorporate Algorithm 4 into the
PatchDEMUX inference procedure (Algorithm 1) and Algo-
rithm 5 into the PatchDEMUX certification procedure (Algo-
rithm 2). Finally, we use the location-aware certification method
(Algorithm 3) with the vulnerability status arrays expressed in
terms of masks.

C. Further Details on Evaluation Metrics

In this section, we discuss the evaluation metrics from Sec. 4
and Sec. 5 in more detail.

C.1. Threshold analysis

We evaluate multi-label classifiers by computing precision and
recall metrics over a variety of different thresholds; classes with
output higher than the threshold are predicted 1, otherwise 0.
This helps establish a large set of evaluation data from which
to build precision-recall plots. We start by evaluating a set of
standard thresholds:

Tstandard :=10.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
We then evaluate a set of high-value thresholds. This helps fill
out the low recall-high precision region of a precision-recall
curve:

Thign :={0.91,0.92,0.93,0.94,0.95,0.96,0.97,0.98,0.99}

We next evaluate a set of very high-value thresholds. These
evaluations provide points at which recall is close to 0%:

Toeryhign :=10.999,0.9999,0.99999 }

Finally, we evaluate a set of mid-value thresholds. These help
to smoothen out a precision-recall curve:

Tnid = Tmia1 YT mia2 T mia3 Umida

where

Toiar = {0.540.02-¢:¢ € {1,2,34}}
Toniaz:={0.6+0.02-¢:t € {1,2,34}}
Toias:={0.7+0.02-¢:t € {1,2,3,4}}
Tnida:={0.840.02-¢t:t€{1,2,3,4}}

For ViT-based models specifically, we found that the low
precision-high recall region of a precision-recall curve does not
readily appear if we limit evaluation to the thresholds outlined
above. We thus further evaluate the following set of low-value
thresholds for ViT-based models:

Tiow :={5-1075,107%,5-107%,1072,5-1072,0.01,0.05}

In order to obtain precision values at key recall levels (i.e.,
25%, 50%, 75%), we can perform linear interpolation between
relevant recall bounds. However, recall values computed using
the thresholds above are often not close enough to these target
values. To this end, we use an iterative bisection scheme to find
overestimated and underestimated bounds within 0.5 points of
the target recalls. The precision values are then calculated by
linearly interpolating between these bounds.

C.2. Computing average precision

In order to compute an approximation for average precision,
we leverage the area-under-the-curve (AUC) of the associated
precision-recall curves. However, in practice the threshold anal-
ysis from Appendix C.1 can result in different leftmost points
for the precision-recall curves. In order to enforce consistency,
we fix the leftmost points for each precision-recall plot at exactly
25% recall. Then, the AUC is computed using the trapezoid
sum technique and normalized by a factor of 0.75 (i.e., the ideal
precision-recall curve). Note that we pick 25% recall because
a few evaluations under this value demonstrate floating-point
precision errors (i.e., the required threshold is too high).

D. Resnet Architecture Analysis

In this section, we report results for PatchDEMUX while us-
ing the Resnet architecture [3]; we leverage the same defense
fine-tuning routine as Sec. 4.2 to achieve stronger performance.
Experiments are done on the MS-COCO 2014 validation dataset.
The precision values associated with key recall levels are in
Tab. 2. Fig. 5 features precision-recall plots, while AP values
are present in Tab. 2.

We find that the Resnet and ViT architectures show similar
qualitative trends. For instance, defended clean performance is
close to undefended performance across a variety of thresholds
(see Fig. 5a and Tab. 2a). The Resnet-based variant of PatchDE-
MUX also achieves non-trivial robustness, with a certified av-
erage precision of 37.544%. In general, the precision-recall
curves for the two architectures are similar in shape across all
four evaluation settings.

Despite these similarities, the ViT model consistently out-
performs the Resnet model. More specifically, the ViT-based
variant of PatchDEMUX provides a ~4 point boost to clean

Table 2. PatchDEMUX performance with Resnet architecture on the MS-COCO 2014 validation dataset. Precision values are evaluated at key
recall levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational

budget of 6 x 6 masks.
(a) Clean setting precision values (b) Certified robust setting precision values
Architecture Resnet Architecture Resnet
Clean recall 25% 50% 75% AP Certified recall 25% 50% 75% AP
Undefended — 99.832 99425 92341 87.608 Certified robust ~ 86.696 40.190 20.959 34.859
Defended 99.835 98.257 80.612 81.031 Location-aware 87950 44.373 23.202 37.544
100 *""‘2*“_\\ 100
o TN, o “
) ™ \ :
:E 60 \\.\ :é 60 \\
g 40 E 40
o -»-Undefended K\ E’ -e-Certified robust W
20 20
~+-Defended \ ~+-Locatiop-aware
0 0

0 20 40 60 80 100
Clean recall

(a) Clean setting precision-recall curves

0 20 40 60 80 100
Certified recall

(b) Certified robust setting precision-recall curves

Figure 5. PatchDEMUX precision-recall curves with Resnet architecture over the MS-COCO 2014 validation dataset. We consider the clean and
certified robust evaluation settings. We assume the patch attack is at most 2% of the image area and use a computational budget of 6 X 6 masks.

AP in the defended clean setting and a ~7 point boost to cer-
tified AP in the two certified robust settings (see Tab. 1). This
improvement might be attributable to the training procedure of
vision transformers, which involves a masking process that is
similar in concept to PatchCleanser’s double-masking algorithm
[9, 33].

E. Location-aware Certification Analysis

Table 3. ViT-based PatchDEMUX performance with different location-
aware attackers. Experiments performed on the MS-COCO 2014
validation dataset. Precision values are evaluated at key recall levels
along with the approximated average precision. We assume the patch
attack is at most 2% of the image area and use a computational budget
of 6 X 6 masks.

Architecture ViT

Certified recall 25% 50% 5% AP
FP attacker 95724 62.132 33.112 49474
FEN attacker 95971 58.158 27.199 45951
Location-aware robust 95.670 56.038 26375 44.902
Certified robust 95.369 50950 22.662 41.763

In this section we investigate the location-aware certification
approach from Sec. 3.4 in more detail.

100

®
S

~o-FP attacker

@
S

-e-FN attacker

W
IR

IS
S

-e-Locationraware
robust

Certified precision

N
153

~e-Certified|robust

0 20 40 60 80 100
Certified recall

Figure 6. ViT-based PatchDEMUX precision-recall curves with dif-
ferent location-aware attackers. Experiments performed on the MS-
COCO 2014 validation dataset. The baseline certified robust evaluation
setting is included for comparison. We assume the patch attack is at
most 2% of the image area and use a computational budget of 6 X 6
masks.

E.1. Attack vectors

Based on Sec. 3.4.2, there are a couple different ways to evaluate

the robustness provided by the location-aware method.

* F'N attacker: Here, we only track vulnerability status arrays
A for false negatives. Intuitively, this corresponds to the
optimal attacker from Sec. 3.4.2 constructing a patch with the
sole intent of increasing false negatives (i.e., a F'IV attack). In

Algorithm 3, tie-breakers are decided by picking the location
which induces more false positives.

* F'P attacker: In this scenario we only track vulnerability
status arrays A for false positives. This corresponds to the
optimal attacker from Sec. 3.4.2 constructing a patch with the
sole intent of increasing false positives (i.e., a F'P attack). In
the F'P version of Algorithm 3, tie-breakers are decided by
picking the location which induces more false negatives.

We also consider “worst case” performance where we simultane-
ously determine the worst patch location for both false negatives
and false positives. Note that these two locations do not have
to be identical, and as a result this “worst case” performance is
not necessarily realizable. However, we evaluate this approach
because it represents the theoretical lower bound on robustness
for Algorithm 3 given an arbitrarily motivated attacker.

E.2. Experiment results

We now empirically compare the different attack vectors pos-
sible under location-aware certification. We consider the ViT
architecture alone as it provides better performance compared
to Resnet. In addition, we leverage the same pre-trained model
checkpoints used in Sec. 4.2 for consistency. Experiments are
done on the MS-COCO 2014 validation dataset. Precision val-
ues corresponding to different attackers are present in Tab. 3,
while precision-recall plots are in Fig. 6.

Provable robustness improvements. Regardless of the at-
tack strategy employed, location-aware certification provides
improved robustness compared to the baseline certified robust
setting; this is expected due to Theorem 2. Improvement is most
notable in both the mid recall-mid precision and high recall-
low precision sections of the precision-recall curve. Overall,
the most favorable evaluation approach provides an ~8 point
increase in certified AP compared to the baseline. Despite these
improvements, location-aware certification does not fundamen-
tally change the shape of the robust precision-recall curve under
any of the three attack settings.

Asymmetric attack performance. Interestingly, location-
aware certification provides the strongest robustness guarantees
under the F'P attack strategy. This is likely due to the asymmet-
ric dependence of precision and recall metrics on false positives.
Specifically, both metrics depend on false negatives’, but the
recall metric does not depend on false positives. This makes
F'P attacks “weaker” relative to other methods.

F. Defense Fine-tuning for PatchDEMUX

Single-label CDPAs often leverage defense fine-tuning routines
to improve the robustness of underlying single-label classifiers;
these work by training the model on specially augmented data
[8, 28, 33]. In this section, we investigate whether some of
these routines can extend to multi-label classifiers and improve
PatchDEMUX performance. We specifically consider fine-
tuning strategies used by PatchCleanser, as PatchCleanser is the
certifiable backbone for PatchDEMUX in this work.

7Precision indirectly depends on false negatives via the true positive count

F.1. Defense fine-tuning techniques for Patch-
Cleanser

Two different defense fine-tuning techniques have been used
to improve the performance of PatchCleanser: Random Cutout
[8] and Greedy Cutout [28]. The former works by placing two
square masks at random locations on training images, with each
mask covering at most 25% of the image area [8, 33]. Xiang
et al. [33] found that Random Cutout fine-tuning provides signif-
icant boosts to the robustness of PatchCleanser; intuitively, using
cutout masks for defense fine-tuning helps the underlying model
become more tolerant to occlusion effects from double-masking
procedures. Later, Saha et al. [28] proposed the Greedy Cutout
fine-tuning procedure and demonstrated superior performance
to Random Cutout for PatchCleanser. This approach works by
augmenting each training image with the pair of certification
masks that greedily induce the highest loss.

F.2. Defense fine-tuning methodology

In our experiments we compare the following three defense
fine-tuning methods, which are representative of settings used
in prior work [8, 28, 33].

» Random Cutout fine-tuning with two square 25% masks

* Greedy Cutout fine-tuning with 6 x 6 certification masks

¢ Greedy Cutout fine-tuning with 3 x 3 certification masks

For Greedy Cutout, we compute the loss for masks while models
are in evaluation mode; this approach helps avoid consistency
issues associated with batch normalization. We do not consider
the more complex multi-size greedy cutout approach from Saha
et al. [28] due to difficulties with mask decompositions.

To train the model with these methods, we first obtain ex-
isting checkpoints for the MS-COCO 2014 classification task
[3, 20]. We then follow the training methodology for multi-
label classifiers outlined by Ben-Baruch et al. [3]. Specifically,
we use asymmetric loss (ASL) as the loss function, a 1cycle
learning rate policy with max learning rate o4 = 5.0-1072,
automatic mixed precision (AMP) for faster training, and ex-
ponential moving average (EMA) of model checkpoints for
improved inference [3]. Models are fine-tuned on copies of
the MS-COCO 2014 training dataset augmented by Random
Cutout and Greedy Cutout. We use the Adam optimizer for 5
epochs, and best checkpoints are picked according to the loss
on held out data®. A cluster of NVIDIA A100 40GB GPUs are
used to perform the fine-tuning.

F.3. Experiment results

Results for the different defense fine-tuning routines are in Tab. 4.
In addition, precision-recall plots comparing the defense fine-
tuning routines for each of the four PatchDEMUX evaluation
settings are present in Fig. 7. We consider the ViT architecture
alone as it provides better performance compared to Resnet. Ex-
periments are done on the MS-COCO 2014 validation dataset.
Defense fine-tuning boosts performance. In general, we
find that using a defense fine-tuning routine of any kind leads

8We find that fine-tuning for longer leads to overfitting.

Table 4. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset when using different defense fine-tuning
techniques. Precision values are evaluated at key recall levels along with the approximated average precision. We assume the patch attack is at most

2% of the image area and use a computational budget of 6 x 6 masks.

(a) Clean setting precision values

Architecture VIiT (vanilla/no fine-tuning) ViT (Random Cutout) ViT (Greedy Cutout 6 x 6) VIiT (Greedy Cutout 3 x 3)
Recall 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP
Undefended 99.940 99.749 96.265 91.449 99.770 99.642 95951 90.900 99.930 99.704 96.141 91.146 99.930 99.736 95.973 90.903
Defended 99.930 99.138 85.757 83.776 99.858 99.224 87.273 85.028 99.894 99.223 87.764 85.276 99.900 99.230 87.741 85.271
(b) Certified robust setting precision values

Architecture ViT (vanilla/no fine-tuning) ViT (Random Cutout) ViT (Greedy Cutout 6 x 6) ViT (Greedy Cutout 3 x 3)
Certified recall 25% 50% % AP 25% 50% % AP 25% 50% 5% AP 25% 50% 5% AP
Certified robust 90.767 38490 20.846 35.003 94.192 47.548 24.603 40.975 95369 51.580 22.662 41.763 95.574 51.095 23.454 42.077

Location-aware robust 91.665 43.736 23.163 38.001 94.642 52.491

27.526 43908 95.670 56.038 26.375 44902 95959 55958 27.105 45.122

100

~—

N\
\

80

0 ~#-VIiT (no training)

-o-ViT (Random Cutout)

Precision

40

-o-ViT (Greedy Cutout 6x6)

20

-o-ViT (Greedy Cutout 3x3)

20 40

Recall

60 80 100

(a) Undefended clean precision-recall curves

100

i

NS

Sy

80

~o-ViT (no tr
60

-e-V/iT (Random Cutout)

40

Certified precision

-o-V/iT (Greedy Cutout 6x6)

20

-o-ViT (Greedy Cutout 3x3)

20 40 60

Certified recall

80 100

(c) Certified robust precision-recall curves

Precision

Certified precision

100

80

0 -o-ViT (noftraining)
-e-ViT (Random Cutout) \
40
-o-ViT (Greedy Cutout 6x6) X
20
-o-ViT (Greedy Cutout 3x3) !
0

20 40 60

Recall

80

(b) Defended clean precision-recall curves

100

~

raining)

80

~-ViT (no
60

-e-ViT (Random Cutout)

40

-o-V/iT (Greedy Cutout 6x6)

20

-o-ViT (Greedy Cutout 3x3)

20 40 60

Certified recall

80 100

(d) Location-aware robust precision-recall curves

Figure 7. PatchDEMUX precision-recall curves with ViT architecture over the MS-COCO 2014 validation dataset when using different defense
fine-tuning techniques. We consider each of the four evaluation settings in separate plots. We assume the patch attack is at most 2% of the image

area and use a computational budget of 6 X 6 masks.

to performance boosts for PatchDEMUX. For instance, fine-
tuning helps the two certified robust evaluation settings achieve
a 6 — 7 point improvement in certified AP compared to the
vanilla checkpoints, while the defended clean setting demon-
strates a ~2 point improvement in clean AP compared to the
baseline. Greedy Cutout also provides additional robustness
boosts compared to Random Cutout, with certified AP metrics

being almost a full point higher; this corroborates with findings
from Saha et al. [28]. Note that in general defense fine-tuning
strategies are less effective in the clean settings. This is likely be-
cause the clean settings already demonstrate (relatively) strong
performance, and thus potential gains from fine-tuning are more
marginal. Nevertheless, we prioritize the defended clean set-
ting overall as it is most representative of typical performance.

The Greedy Cutout 6 x 6 fine-tuning strategy, which achieves
the highest defended clean AP value, is therefore featured in
Sec. 4.2.

Location-aware certification provides consistent improve-
ments. An interesting observation from Tab. 4 is that the
location-aware robust setting provides a consistent 3 point boost
to certified AP regardless of the presence/absence of defense
fine-tuning. This suggests that our location-aware certification
technique has general utility across a variety of scenarios and
that it “stacks” with other sources of robustness improvements.

G. Runtime Analysis of PatchDEMUX

Table 5. Runtime experiments on PatchDEMUX. We report median
per-sample inference time (in milliseconds) across a random sample
of 2000 datapoints from the MS-COCO 2014 validation dataset. We
assume the patch attack is at most 2% of the image area.

Architecture ViT (2x2 masks) ViT (4 x4 masks) ViT (6 x 6 masks)
Undefended 31.130 31.130 31.130
Defended (single-label) 200.61 674.98 1451.1
Defended (multi-label) 317.30 1892.3 5668.7
7000

@ 6000

£

T

£ 5000

i Undefended baseline

2 4000

g_: -#-Defended (single-label)

53000 ~@-Defended (mufti-tabel) |

=3

% 2000 »

,3_‘L’ 1000 Pt I I VRS

s @
0 i

0 5 10 15 20 25 30 35
Mask number parameter

Figure 8. Plot of PatchDEMUX runtime as a function of mask number.
We report median per-sample inference time (in milliseconds) across a
random sample of 2000 datapoints from the MS-COCO 2014 validation
dataset. We assume the patch attack is at most 2% of the image area.

In this section, we analyze the runtime of the PatchDEMUX
inference procedure. To determine the impact of class number,
we create a restricted version of our inference procedure that
operates only on the first class (i.e., it ignores the remainder of
the label y € {0,1}°); this is essentially an instance of Patch-
Cleanser isolated to a single class. We then track the runtime for
2000 random datapoints from the MS-COCO 2014 validation
dataset. We use the ViT checkpoints from Sec. 4.2 and use a
batch size of 1 to directly obtain per-sample inference time. The
median per-sample inference times for different mask numbers
are present in Tab. 5 and Fig. 8.

We note that for most mask numbers the full multi-label in-
ference procedure takes roughly 3 longer than the single-label
implementation. Given that MS-COCO has ¢=80 classes, this
is significantly faster than the expected runtime for the naive

method from Algorithm 1. The reason for this improvement is
an implementation-level optimization that takes advantage of
relatively negligible defense post-processing. Specifically, the
primary bottleneck for single-label inference procedures is often
model query time; the associated defense post-processing is
negligible in comparison. This means that for each feedforward
through the multi-label classifier we can apply single-label de-
fense post-processing to every class and re-use individual class
outputs as needed for multi-label inference. As an example, with
PatchCleanser this is done by saving intermediate outputs that
correspond to double-masked images. Overall, this technique
helps prevent computation cost from increasing drastically with
the number of classes.

Despite this optimization, we note that the multi-label in-
ference implementation is still not as fast as the single-label
inference implementation. This is because many single-label
inference procedures have worst-case scenarios which take sig-
nificantly longer than typical cases. Increasing the number of
classes increases the possibility that at least one class will trigger
a worst-case scenario, leading to longer overall runtime.

H. Performance on PASCAL VOC

In this section we report evaluation results for PatchDEMUX on
PASCAL VOC. Because model checkpoints for PASCAL VOC
are not readily available, we first create a multi-label classifier
for the PASCAL VOC task. To do so, we use model checkpoints
pre-trained on the MS-COCO dataset and fine-tune it for the
PASCAL VOC dataset. We use asymmetric loss (ASL) as the
loss function, a 1cycle learning rate policy with max learning
rate ey = 2.0 - 1073, automatic mixed precision (AMP)
for faster training, and exponential moving average (EMA) of
model checkpoints for improved inference [3]. Models are fine-
tuned on the PASCAL VOC 2007 training split. We use the
Adam optimizer for 15 epochs and select the best checkpoint
according to average loss on the PASCAL VOC 2007 validation
split. A cluster of NVIDIA A100 40GB GPUs are used to
perform the fine-tuning. We omit additional security fine-tuning
to focus on baseline performance.

We evaluate the fine-tuned model on the PASCAL VOC 2007
test dataset. We summarize the precision values associated with
key recall levels in Tab. 6. Fig. 9 features precision-recall plots,
while AP values are present in Tab. 6. We consider the ViT
architecture alone as it provides better performance compared
to Resnet.

Strong all-around performance. As shown in Tab. 6 and
Fig. 9, PatchDEMUX achieves strong performance in all evalua-
tion settings. In fact, PatchDEMUX’s performance on PASCAL
VOC is significantly higher than its performance on MS-COCO,
with a ~ 7 point increase in defended clean performance and
~ 12 point increase in certified robustness metrics (see Sec. 4.2).
Overall, these stronger results are expected given that the PAS-
CAL VOC benchmark has fewer classes than MS-COCO, mak-
ing it an easier benchmark for classifiers to predict.

Concave robustness curves. An interesting observation is
that both of the PASCAL VOC robustness curves are concave

Table 6. PatchDEMUX performance with ViT architecture on the PASCAL VOC 2007 validation dataset. Precision values are evaluated at key recall
levels along with the approximated average precision. We assume the patch attack is at most 2% of the image area and use a computational budget

of 6 6 masks.
(a) Clean setting precision values (b) Certified robust setting precision values
Architecture ViT Architecture ViT
Cleanrecall 25% 50% 5% AP Certified recall 25% 50% 5% AP
Undefended ~ 99.790 99.710 98.506 96.140 Certified robust ~ 90.520 74.675 38.100 54.904
Defended 99.894 99.870 98.167 92.593 Location-aware 90.591 75.672 40.320 56.030
100 100
i "“% _w T
é . \\ % . \
o -»-Undefende: 3 i
- fom = BN
, L rovust

0 20 40 60 80 100
Cleanrecall

(a) Clean setting precision-recall curves

0 20 40 60 80 100
Certified recall

(b) Certified robust setting precision-recall curves

Figure 9. PatchDEMUX precision-recall curves with ViT architecture over the PASCAL VOC 2007 test dataset. We consider the clean and certified
robust evaluation settings. We assume the patch attack is at most 2% of the image area and use a computational budget of 6 x 6 masks.

in Fig. 9b. This is in contrast to MS-COCO experiments, where
even after applying security fine-tuning methods the robustness
curves remained convex (see Fig. 7). An important takeaway
from this is that PatchDEMUX performance is dataset depen-
dent, and robustness bounds will ultimately depend on the nature
of image datapoints and/or labels. Additionally, we note that
location-aware certification only provides a ~ 1 point boost to
certified AP; this suggests that location-aware certification is
most beneficial when baseline robustness bounds are weak.

L. Tables for Security Parameter Experiments

In this section we provide the tables associated with the security
parameter experiments in Sec. 5. In Tab. 7 we list metrics
associated with the mask number experiments from Sec. 5.1. In
Tab. 8 we list metrics associated with the patch size experiments
from Sec. 5.2.

Table 7. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset. We vary the mask number security parameter
associated with the underlying single-label CDPA PatchCleanser and fix the estimated patch size at 2% of the image area. We list even mask number
values for brevity. Precision values are evaluated at key recall levels along with the approximated average precision.

(a) Clean setting precision values
Architecture ViT (2 X 2 masks) ViT (4 x 4 masks) ViT (6 x 6 masks)
Recall 25% 50% 75% AP 25% 50% 75% AP 25% 50% 75% AP

Undefended ~ 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449
Defended 99.910 96.999 75.393 78.727 99.930 98.845 83.388 82.529 99.930 99.138 85.757 83.776

(b) Certified robust setting precision values

Architecture ViT (2 x 2 masks) ViT (4 x 4 masks) VIiT (6 x 6 masks)
Certified recall 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP
Certified robust 41.577 17.924 9909 15735 87.976 37.163 19.798 33.231 90.767 38.490 20.846 35.003

Location-aware robust 46.553 20.624 10.798 17.690 89.259 41.490 21.763 35.953 91.665 43.736 23.163 38.001

Table 8. PatchDEMUX performance with ViT architecture on the MS-COCO 2014 validation dataset. We vary the patch size security parameter
associated with the underlying single-label CDPA PatchCleanser and fix the mask number parameter at 6 X 6. Precision values are evaluated at key
recall levels along with the approximated average precision.

(a) Clean setting precision values
Architecture ViT (0.5% patch) ViT (2% patch) ViT (8% patch) VIT (32% patch)
Recall 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP

Undefended ~ 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449 99.940 99.749 96.265 91.449
Defended 99.947 99.470 89.150 85.731 99.930 99.138 85.757 83.776 99.907 97.798 78.712 80.093 99.529 89.813 60.543 69.952

(b) Certified robust setting precision values

Architecture ViT (0.5% patch) ViT (2% patch) ViT (8% patch) VAT (32% patch)
Certified recall 25% 50% 5% AP 25% 50% 5% AP 25% 50% 5% AP 25% 50% % AP
Certified robust 97.670 61.867 30.239 48.820 90.767 38.490 20.846 35.003 44.666 19.249 11.832 16961 6.933 5827 4.854 5.297

Location-aware robust 97.769 66.350 32.850 51.158 91.665 43.736 23.163 38.001 50.263 22965 13363 19.713 9.169 6.997 5307 6.195

	Introduction
	Problem Formulation
	Multi-label classification
	The patch threat model
	Certifiable defenses against patch attacks
	Certifiable defenses for single-label classifiers against patch attacks

	PatchDEMUX Design
	An overview of the defense framework
	PatchDEMUX inference procedure
	PatchDEMUX certification procedure
	Location-aware certification
	Tracking vulnerable patch locations
	Proposing our novel algorithm

	Main Results
	Setup
	PatchDEMUX overall performance
	Ablation studies

	Security Parameter Experiments
	Impact of varying mask number
	Impact of varying patch size
	Overall takeaways

	Related Work
	Conclusion
	Acknowledgements
	Certification Robustness Proofs
	Baseline certification correctness
	Location-aware certification correctness

	Double-masking Algorithm from PatchCleanser
	Double-masking overview
	Double-masking inference procedure
	Double-masking certification procedure
	Integration with PatchDEMUX

	Further Details on Evaluation Metrics
	Threshold analysis
	Computing average precision

	Resnet Architecture Analysis
	Location-aware Certification Analysis
	Attack vectors
	Experiment results

	Defense Fine-tuning for PatchDEMUX
	Defense fine-tuning techniques for PatchCleanser
	Defense fine-tuning methodology
	Experiment results

	Runtime Analysis of PatchDEMUX
	Performance on PASCAL VOC
	Tables for Security Parameter Experiments

