
3D-GSW: 3D Gaussian Splatting for Robust Watermarking

Supplementary Material

Overview
This supplementary material is organized as follows:

Section 1 explains the implementation details of our wa-
termark decoder. Section 2 elaborates on the additional de-
tails of Frequency-Guided Densification (FGD). Section 3
provides the further analysis of the gradient mask. Section 4
presents the details of the wavelet-subband loss. Section 5
shows further experimental results, including the compar-
ison with the baselines, the challenging scenario, the ro-
bustness test, the failure case, and qualitative results of all
message bits 32, 48, and 64.

1. Pre-training Decoder
In digital watermarking, the primary goal is to ensure that
the message is decoded only from images where the mes-
sage is embedded. In the fine-tuning method, a challenge
arises: the model is typically trained with a unique message.
This often leads to the decoder overfitting to a specific mes-
sage, decoding the message from non-embedded rendered
images. (See Tab. 1)

Method Bit Acc↑ (W/ M) Bit Acc↓ (W/O M)

Train decoder with 3D-GS 99.53 99.53
Ours (pre-train decoder) 97.37 53.92

Table 1. Bit Acc↑(W/ M) is the bit accuracy from images with
a message. Bit Acc↑(W/O M) is the bit accuracy from images
without a message. The results are conducted on Blender, LLFF,
and Mip-NeRF 360 datasets with watermarked message 32bits.

To address the issue of the decoder memorizing the
unique message, StegaNeRF [8] incorporates a classifier
that determines the presence of a message. Furthermore,
StegaNeRF [8] employs the specific patterns in the differ-
ence between the original image and the image containing
the message, ensuring that the decoder cannot memorize the
message. However, this method requires prior knowledge of
the specific type of attack applied to the image to decode the
message. Since identifying the specific type of distortion
used by unauthorized users is challenging, there is a need
for a method capable of decoding messages directly from a
single image, independent of the applied attack. In our ap-
proach, we utilize a pre-trained decoder to prevent it from
memorizing the unique message and to decode the message
from a single image, ensuring robustness and reliability in
the message decoding process.

1.1. Architecture and Implementation Details
Architecture. We utilize the HiDDeN architecture [16],
which consists of the encoder, decoder, and distortion layer.

The encoder has 4 Conv-BN-ReLU blocks, kernel size 3,
stride 1, and padding 1. The decoder consists of 7 Conv-
BN-ReLU blocks with 64 filters. Average pooling is per-
formed over all spatial dimensions, and a final L×L linear
layer produces the decoded message, where L is the num-
ber of bits in the watermark message. The distortion layer
has crop, scaling, and JPEG compression.

Implementation Details. We train the full HiDDeN ar-
chitecture [16] on {32,48,64} bits using the MS-COCO
dataset [11]. This process is only required once per bit
length. The optimization is performed with Adam [6] and a
learning rate of 10−4. We employ Mean Squared Error as
an image loss and a message loss. To focus on decoder per-
formance, we set the image loss hyper-parameter to 0 and
the message loss hyper-parameter to 1 in the pre-training
decoder process. By following the strategies from Stable
Signature [3], we incorporate PCA whitening into the de-
coder to avoid bias in the decoded message, enhancing the
robustness and reliability of the decoder.

Input of Decoder Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

Pixel 70.93 31.63 0.973 0.050
DFT 50.10 40.36 0.993 0.024
DCT 50.08 39.97 0.994 0.016

LL Subband (Level 1) 94.17 30.86 0.972 0.051
LL Subband (Level 2) 97.37 35.08 0.978 0.043
LL Subband (Level 3) 94.95 33.19 0.973 0.047
LL Subband (Level 4) 90.06 32.41 0.970 0.021

Table 2. We transform the rendered image to the frequency do-
main, using DFT, DCT, and DWT. We choose low-frequency com-
ponents for each transformed image as an input of the decoder
to fine-tune 3D-GS. Pixel indicates that the rendered image itself
is the input to the decoder. Results represent the average score
across Blender, LLFF, and Mip-NeRF 360 datasets using 32-bit
messages.

1.2. Select the input of Decoder
JPEG compression methods [12, 15] tend to remove high-
frequency of the image. WateRF [4] shows that the low-
frequency of Discrete Wavelet Transform (DWT) enables
robust message embedding for radiance field watermarking.
Following these properties, we choose the low-frequency as
the input of the decoder. As shown in Tab. 2, we observe
that DWT at level 2, there is a good balance between bit
accuracy and rendering quality. Notably, other transforma-
tions like Discrete Fourier Transform (DFT) and Discrete
Cosine Transform (DCT) fail to embed the message. Fur-
thermore, the pixel domain can embed messages but does
not guarantee high bit accuracy. From these results, we



Dataset # Original # Remove # Split # After FGD Removal Ratio FPS↑ (Before/After/Ratio)
Blender 0.29M 0.07M 0.03M 0.25M 13.58% 208.05 / 231.62 /+11.33%
LLFF 0.98M 0.36M 0.06M 0.68M 30.56% 75.24 / 90.55 /+20.35%
Mip-NeRF 360 3.36M 1.06M 0.09M 2.39M 28.85% 56.65 / 72.68 /+28.30%

Table 3. The impact of Frequency-Guided Densification (FGD) on the number of 3D Gaussians and rendering speed. We show the original
number of 3D Gaussians, the number of removed and split 3D Gaussians, and the final count after FGD. The results are shown separately
for Blender, LLFF, and Mip-NeRF 360 datasets.

Methods Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GSW (W/O split) 96.72 33.72 0.970 0.062
3D-GSW (W/ split) (Ours) 97.37 35.08 0.978 0.043

Table 4. We compare bit accuracy and rendering quality of FGD
with split (W/ split) and without split (W/O split). Results repre-
sent the average score across Blender, LLFF, and Mip-NeRF 360
datasets using 32-bit messages.

Original 3D-GSW (Ours)
(W/ split)

3D-GSW 
(W/O split)

Bit-Acc : 100.0 %Bit-Acc : 100.0 %
LPIPS : 0.056LPIPS : 0.071

Rendered 
Iamge

Difference 
(x 2)

High
Frequency 

Area

Figure 1. We compare the difference between FGD with split (W/
split) and without split (W/O split). Both images are embedded by
32-bit messages.

choose DWT at level 2 to embed the message into 3D-GS.

2. Frequency-Guided Densification

2.1. Effectiveness of Split 3D Gaussians
From 3D-GS compression work [7], small 3D Gaussians
have a negligible contribution to the rendering quality due
to their minimal volume. As noted in image compression
work [12], human visual system is less sensitive to high-
frequency components. Furthermore, as highlighted by
error-based densification [1], since a small number of large
3D Gaussians are responsible for capturing high-frequency
details, there are cases where 3D-GS has difficulty recon-
structing high-frequency areas. To address these properties,
we choose 3D Gaussians in high-frequency areas to pre-
serve the rendering quality of the pre-trained 3D-GS. Addi-
tionally, to effectively render high-frequency details during
the fine-tuning process, each selected 3D Gaussian is split

Methods Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GSW (FGD W/ DWT) 95.12 34.23 0.976 0.054
3D-GSW (FGD W/ DCT) 95.48 34.20 0.976 0.054

3D-GSW (FGD W/ DFT) (Ours) 97.37 35.08 0.978 0.043

Table 5. We compare the effectiveness of DFT with other meth-
ods for transforming patches into the frequency domain. Results
represent the average score across Blender, LLFF, and Mip-NeRF
360 datasets using 32-bit messages.

Figure 2. We visualize the patches converted by DFT, DWT, and
DCT, applying a mask that emphasizes high frequency.

into two smaller 3D Gaussians.
As shown in Tab. 4, while both methods ensure high

bit accuracy, our FGD significantly enhances the rendering
quality. From Fig. 1, splitting 3D Gaussians reconstructs
the high-frequency components in more detail. Notably,
FGD, which does not split 3D Gaussians, covers the high-
frequency component by increasing the volume of 3D Gaus-
sians. These results quantitatively and qualitatively demon-
strate the effectiveness and efficiency of split 3D Gaus-
sians. Furthermore, as shown in Tab. 3, although splitting
increases the number of 3D Gaussians, the number of re-
moved 3D Gaussians is relatively higher. Consequently, the
total number of 3D Gaussians after FGD is reduced, leading
to improved rendering efficiency while maintaining quality.

2.2. Emphasize High-Frequency Patch
In phase 2 of FGD, we find the patches with strong inten-
sity of high-frequency signals to split 3D Gaussians within



Figure 3. We compare the effects of patch size and patch selection ratio on the number of 3D Gaussians in 3D-GS after undergoing FGD.
For patch size, we set patch selection ratio to 1 %. For patch selection ratio, we set patch size to 16 × 16.

Patch Size Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

4 × 4 94.12 33.13 0.975 0.054
8 × 8 95.48 34.20 0.976 0.050
16 × 16 (Ours) 97.37 35.08 0.978 0.043

Table 6. We compare performance by patch size. Results repre-
sent the average score across Blender, LLFF, and Mip-NeRF 360
datasets using 32-bit messages.

Top K % Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

10 94.21 32.34 0.975 0.061
5 95.49 33.06 0.975 0.050
2.5 97.19 33.37 0.978 0.044
1 (Ours) 97.37 35.08 0.978 0.043

Table 7. We compare performance by selection ratio, denoted as
K. Results represent the average score across Blender, LLFF, and
Mip-NeRF 360 datasets using 32-bit messages.

those patches. To measure the intensity of high-frequency
signals globally across the patch, Discrete Fourier Trans-
form (DFT) is applied. By analyzing the frequency signals
of the patch through DFT, the value of the high-frequency
areas is calculated to quantify their intensity through a mask
to emphasize high-frequency signals in the patch (See main
paper Sec.3.4).

To evaluate the effectiveness of DFT, we also utilize
other frequency transforms, such as DWT and DCT. In the
case of DWT, we decompose the patch into wavelet sub-
bands and measure the intensity as the average value of the
high-frequency subbands. For DCT, we transform the patch
into the frequency domain and measure the intensity as the
average value of the high-frequency signals in the DCT.

As shown in Tab. 5, our method enhances bit accuracy
and rendering quality, which have a trade-off relationship.
Furthermore, from Fig. 2, we observe that DWT detects
high-frequency regions in specific image areas, leveraging
its ability to analyze local information. In contrast, DCT
has difficulty in detecting high-frequency areas. Notably,
DFT effectively detects high-frequency areas across the en-
tire image due to its characteristic of analyzing global infor-
mation. These results show that DFT effectively evaluates
the distribution of high-frequency signals within the patch.

2.3. Patch Size and Selection Patch
In this section, we explore how patch size and patch selec-
tion ratio affect performance. Since we remove 3D Gaus-
sians to embed a robust message in phase 1 of FGD, it is
crucial to avoid splitting more Gaussians than are removed
during phase 2 of FGD. As shown in Fig. 3, we observe that
increasing the patch size split 3D Gaussians without dis-
turbing the results of removal 3D Gaussians in phase 1, en-
hancing real-time rendering. Tab. 6 shows that a large patch
size improves bit accuracy and rendering quality. Fig. 3
shows that selecting more patches causes more 3D Gaus-
sians to be split, increasing the number of 3D Gaussians
after FGD. Additionally, Tab. 7 shows that as the patch se-
lection ratio increases, all performance decreases. These re-
sults show that an appropriate patch size and patch selection
are effective for message embedding and rendering quality.

3. Gradient Mask
In this section, we present the additional analysis about a
gradient mask. Our gradient mask is calculated as follows:

w =
1

e|θ|β
, z =

w∑NG′
o

i=1 wi

(1)

, where G′
o, θ, NG′

o
, i and β > 0 are respectively denoted

as 3D-GS passed through FGD, the parameter of G′
o, the

number of 3D Gaussians in G′
o, the index of 3D Gaussians

and the strength of gradient manipulation.

3.1. Effectiveness of Exponential Function
In FGD process, we modify 3D Gaussians in the pre-trained
3D-GS to enhance the robustness of the message and ren-
dering quality. Since 3D-GS passed through FGD provides
high-quality rendering, it is crucial to preserve the render-
ing quality during the fine-tuning process. To achieve this,
we reduce gradient size to minimize changes in the parame-
ters of 3D-GS passed through FGD, utilizing an exponential
function. As shown in Tab. 8, we observe that the expo-
nential function maintains the parameters of 3D-GS passed
through FGD. Notably, the exponential function preserves
color parameters identically. Tab. 9 shows that the expo-
nential function has superior rendering quality compared to
other methods.



Cosine Similarity of Parameters ↑

Methods Color Opacity Scale Rotation Position

W/O exponential 0.982 0.997 0.991 0.989 0.999
W/ exponential (Ours) 0.999 0.997 0.999 0.995 0.999

Table 8. We compare similarity of parameters for a exponential
function. We calculate cosine similarity between 3D-GS passed
through fine-tuning process and 3D-GS passed through FGD pro-
cess. Results represent the average score across Blender, LLFF,
and Mip-NeRF 360 datasets using 32-bit messages.

Methods Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GS After FGD (N/M) - 48.66 0.998 0.002
StegaNeRF [8]+3D-GS [5] 93.15 32.68 0.953 0.049
WateRF [4]+3D-GS [5] 93.42 30.49 0.956 0.050
W/O exponential 93.99 27.54 0.898 0.093
W/ exponential (Ours) 97.37 35.08 0.978 0.043

Table 9. We compare bit accuracy and rendering quality for a
exponential function with other methods. 3D-GS After FGD (N/
M) refers to 3D-GS that has gone through FGD before embedding
the message. Results represent the average score across Blender,
LLFF, and Mip-NeRF 360 datasets using 32-bit messages.

Figure 4. We compare the strength of the gradient mask. Beta
controls the size of the gradient. A larger beta reduces the gradient
size further.

3.2. Strength of Gradient Mask
Following Eq. 1, β controls the strength of gradient ma-
nipulation. As shown in Fig. 4, we observe that increasing
β enhances the rendering quality. However, bit accuracy
does not continue to increase but decreases when β becomes
greater than 4. This shows the trade-off between bit accu-
racy and rendering quality, and we find that β = 4 achieves
a good balance between bit accuracy and rendering quality.

4. Wavelet-subband loss
4.1. Effectiveness of Wavelet-subband loss
Since 3D-GS increases the volume of fewer 3D Gaussians
to render high-frequency areas, there is a tendency to lose
detailed information in the high-frequency areas. To ad-
dress this issue, in phase 2 of FGD, we split 3D Gaussians
into smaller ones. Furthermore, we propose a wavelet-
subband loss to avoid losing details in the high-frequency

Figure 5. We show the differences(x2) between the watermarked
image and the original image. Our method enhances the detail in
the high-frequency areas.

areas during the fine-tuning process. Wavelet-subband loss
is designed to focus on the high-frequency, utilizing only
high-frequency subbands (LH, HL, HH).

Figure 6. We show the differences in the frequency domain be-
tween the watermarked image and the original image. We trans-
form both images to the frequency domain using DFT. Radius is
the distance from the center of the image. The larger radius repre-
sents the high-frequency areas. The blue line represents our result.
A lower value on the y-axis indicates greater similarity to the orig-
inal image. We show this result on the LLFF dataset using 32-bit
messages.

As shown in Fig. 5, we observed that the wavelet-
subband loss using only high-frequency subbands achieves
better rendering quality. To further analyze the rendering
quality in the high-frequency areas, we convert both the
original image and the rendered image to the frequency do-
main and calculate the difference between them. Fig. 6
shows that our method is similar to using LL subbands in
the low-frequency areas, but achieves results more simi-
lar to the original in the high-frequency areas. These re-
sults quantitatively and qualitatively show the effective-
ness of wavelet-subband loss in enhancing quality in high-
frequency areas.



5. Additional Results
5.1. Comparison with the baselines
As shown in Fig. 7, we show the rendering quality with
other methods. We observe that WateRF [4] and StegaN-
eRF [8] have color artifacts in the rendered image due to
increasing the volume of 3D Gaussians. In contrast, our
method preserves rendering quality, while achieving high
bit accuracy. To illustrate the differences between the orig-
inal and watermarked image, we visualize the normalized
pixel intensity difference in Fig. 8, following previous wa-
termarking methods [2, 14]. Our method achieves the
smallest difference, demonstrating superior rendering qual-
ity.

Figure 7. We compare the rendering quality with other methods.
We achieve results that are most similar to the original rendering
quality.

Figure 8. We show the normalized pixel intensity difference be-
tween original and the watermarked image. The blue line rep-
resents our result. A lower value on the y-axis indicates greater
similarity to the original image.

5.2. Robustness Test
Fig. 9 and Fig. 10 show the bit accuracy when the distor-
tion level is varied. We observe that our bit accuracy is
consistently higher than other methods across a wide range
of strengths. Notably, incorporating FGD improves perfor-
mance further, highlighting its role in enhancing robustness

to image and model distortions. These results show that
our method is a highly effective and robust watermarking
method.

5.3. Challenging Scenario

To demonstrate the practicality and scalability, we experi-
ment on a 4D-GS task with a method named Spacetime [10]
using the neural 3D Video dataset [9], which consists of six
dynamic scenes with a resolution of 2028×2704. Tab. 10
shows a performance comparison between ours and base-
lines. Our method consistently achieves superior perfor-
mance on dynamic scenes, particularly in terms of temporal
consistency. This highlights its effectiveness in handling
dynamic scenes while maintaining high rendering quality.
Furthermore, the scalability and practicality of our method
make it well-suited for various real-world applications.

Method Bit-Acc↑ PSNR↑ SSIM↑ LPIPS↓ FVD↓

StegaNeRF [8]+Spacetime [10] 94.75% 31.26 0.940 0.0895 315.11
WateRF [4]+Spacetime [10] 95.11% 30.51 0.939 0.0909 166.15
3D-GSW +Spacetime [10] 97.62% 32.51 0.958 0.0653 125.98

Table 10. We show the scalability of our method to dynamic
scenes. Results represent the average score across neural 3D Video
dataset [9] using 32-bit messages.

5.4. Failure Case

Recently, compression works have emerged in the spotlight
in 3D-GS. Thus, we can consider one scenario, in which
unauthorized users compress watermarked 3D-GS. To per-
form the compression of pre-trained 3D-GS, the unautho-
rized users must have the same training data of the target
3D asset to train the 3D-GS. We assume that the unautho-
rized users have the same training data as the watermarked
3D-GS and proceed with compression. The compression
is conducted by Simon [13]. As shown in Tab. 11, we ob-
serve that all methods lose the message in the compression
process. This result is a failure case of the entire radiance
field watermarking research. Although our method is ro-
bust when the unauthorized users only have 3D-GS, we will
work on the case in the future when they proceed with com-
pression.

Methods Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓

StegaNeRF [8]+3D-GS [5] 52.29 38.68 0.986 0.018
WateRF [4]+3D-GS [5] 50.86 38.77 0.985 0.018
3D-GSW (Ours) 55.51 38.83 0.986 0.018

Table 11. We show the impact of the compression on bit accuracy
and rendering quality. All methods lose the embedded message
due to compression.



Figure 9. Bit accuracy for WateRF [4], StegaNeRF [8], 3D-GSW (W/O FGD), and our method for various image distortions and distortion
strengths. The blue line represents our results. Our method outperforms other methods.

Figure 10. Bit accuracy for WateRF [4], StegaNeRF [8], 3D-GSW (W/O FGD), and our method for model distortions and distortion
strengths. We conduct two model distortion: 1) We add model Gaussian noise to 3D-GS parameters. 2) We remove randomly 3D
Gaussians. 3) We clone randomly 3D Gaussians. The blue line represents our results. Our method outperforms other methods.

5.5. Qualitative results
From Fig. 11 to Fig. 19, we visualize all results rendered
from our method and the difference (× 2) between the orig-
inal image and watermarked image.



Figure 11. Rendering quality of various rendering outputs using our method on Blender dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 32 bits.



Figure 12. Rendering quality of various rendering outputs using our method on Blender dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 48 bits.



Figure 13. Rendering quality of various rendering outputs using our method on Blender dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 64 bits.



Figure 14. Rendering quality of various rendering outputs using our method on LLFF dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 32 bits.



Figure 15. Rendering quality of various rendering outputs using our method on LLFF dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 48 bits.



Figure 16. Rendering quality of various rendering outputs using our method on LLFF dataset. We show the differences (× 2). The closer
it is to white, the bigger the difference between the ground truth and the image. We show the results on 64 bits.



Figure 17. Rendering quality of various rendering outputs using our method on Mip-NeRF 360 dataset. We show the differences (× 2).
The closer it is to white, the bigger the difference between the ground truth and the image. We show the results on 32 bits.



Figure 18. Rendering quality of various rendering outputs using our method on Mip-NeRF 360 dataset. We show the differences (× 2).
The closer it is to white, the bigger the difference between the ground truth and the image. We show the results on 48 bits.



Figure 19. Rendering quality of various rendering outputs using our method on Mip-NeRF 360 dataset. We show the differences (× 2).
The closer it is to white, the bigger the difference between the ground truth and the image. We show the results on 64 bits.



References
[1] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.

Revising densification in gaussian splatting. arXiv preprint
arXiv:2404.06109, 2024. 2

[2] Wang Cai-Yin, Kong Xiang-Wei, and Li Chao. Process color
watermarking: the use of visual masking and dot gain correc-
tion. Multimedia Tools and Applications, 76:16291–16314,
2017. 5

[3] Pierre Fernandez, Guillaume Couairon, Hervé Jégou,
Matthijs Douze, and Teddy Furon. The stable signature:
Rooting watermarks in latent diffusion models. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 22466–22477, 2023. 1

[4] Youngdong Jang, Dong In Lee, MinHyuk Jang, Jong Wook
Kim, Feng Yang, and Sangpil Kim. Waterf: Robust water-
marks in radiance fields for protection of copyrights, 2024.
1, 4, 5, 6

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 4, 5

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[7] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko,
and Eunbyung Park. Compact 3d gaussian representation for
radiance field. arXiv preprint arXiv:2311.13681, 2023. 2

[8] Chenxin Li, Brandon Y Feng, Zhiwen Fan, Panwang Pan,
and Zhangyang Wang. Steganerf: Embedding invisible in-
formation within neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 441–453, 2023. 1, 4, 5, 6

[9] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 5521–5531, 2022. 5

[10] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaus-
sian feature splatting for real-time dynamic view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8508–8520, 2024. 5

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 1

[12] Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi
Wang, and Gang Quan. Deepn-jpeg: A deep neural network
favorable jpeg-based image compression framework. In Pro-
ceedings of the 55th annual design automation conference,
pages 1–6, 2018. 1, 2

[13] Simon Niedermayr, Josef Stumpfegger, and Rüdiger West-
ermann. Compressed 3d gaussian splatting for accelerated
novel view synthesis. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
10349–10358, 2024. 5

[14] Alastair Reed, Tomáš Filler, Kristyn Falkenstern, and Yang
Bai. Watermarking spot colors in packaging. In Media
Watermarking, Security, and Forensics 2015, pages 46–58.
SPIE, 2015. 5

[15] Mengdi Sun, Xiaohai He, Shuhua Xiong, Chao Ren, and
Xinglong Li. Reduction of jpeg compression artifacts based
on dct coefficients prediction. Neurocomputing, 384:335–
345, 2020. 1

[16] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.
Hidden: Hiding data with deep networks. In Proceedings of
the European conference on computer vision (ECCV), pages
657–672, 2018. 1


