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Supplementary Material Overview
This supplementary document is structured as follows:
• Section A: Validating Geometrical Correctness
• Section B: Supplementary Video Overview
• Section C: Addressing Concerns of the Proximity Loss
• Section D: Implementation and Runtime Efficiency
• Section E: Limitations

A. Validating Geometrical Correctness
To validate the geometrical correctness of the 3D Gaussian
splatting results generated by CoMapGS, we analyze the re-
constructed 3D point cloud positions after training. Fig. 7
visualizes the completed set of Gaussian positions for the
LLFF dataset trained with 3 views. To evaluate the prox-
imity of the reconstructed geometry to the true scene, we
applied a proximity classifier trained with 9 views, thus pro-
viding a broader reference set for assessing correctness.

A.1. Comparative Analysis of the Latest Methods
As shown in Fig. 7, the latest methods demonstrate different
behaviors in sparse settings. Specifically:
· FSGS [41] exhibits a tendency to overfit to pseudo-ground
truth during the training process. This leads to an uncon-
trolled proliferation of Gaussians in high-uncertainty re-
gions, often resulting in geometrically incorrect structures.
The method’s reliance on dense Gaussian generation with-
out effective geometric alignment contributes to artifacts,
especially in mono-view regions.
· CoR-GS [38] penalizes mono-view regions more strongly
because the method is designed to retain Gaussians that are
consistent across separate Gaussian models during training,
ultimately prioritizing those that satisfy multiview geometry
constraints. While this helps avoid overfitting in sparsely
captured areas, it also leads to incomplete reconstructions
or missing details in high-uncertainty regions. The lack of
adaptive supervision across varying covisibility levels limits
its ability to recover underrepresented structures.
· The proposed CoMapGS demonstrates significantly im-
proved geometric alignment, as seen in the more co-
herent distribution of Gaussians across both high- and
low-covisibility regions. By leveraging covisibility maps,
CoMapGS applies adaptive supervision to ensure balanced
updates for both multiview and mono-view regions. This is
further supported by the proximity loss, which aligns Gaus-
sians to the true scene structure without over-penalizing
sparse areas.

A.2. Insights from Proximity Classification
In Fig. 7, the blue and red points denote the proximity clas-
sification results, with a threshold of 0.5. Blue points repre-
sent regions classified as closer to the true geometry, while
red points indicate areas farther from the original structure.
Key observations include:
· Consistency in Multiview Regions: In areas with high
covisibility, CoMapGS effectively aligns Gaussians close to
the ground truth, as evidenced by the predominance of blue
points. This indicates that the adaptive weighting mecha-
nism in multiview regions successfully guides reconstruc-
tion.
· Improvement in Mono-View Regions: Unlike
FSGS [41] and CoR-GS [38], which either overfit or
neglect mono-view regions, CoMapGS ensures that
Gaussians in these high-uncertainty areas are plausibly
positioned. The inclusion of proximity-based supervision
mitigates structural divergence, which is critical for realistic
novel view synthesis.
· Balanced Distribution: CoMapGS prevents the over-
concentration of Gaussians in highly covisible regions, ad-
dressing the imbalance commonly observed in baseline
methods. This balanced distribution directly translates to
improved reconstruction quality, particularly in underrepre-
sented areas.

A.3. Broader Implications
The ability of CoMapGS to produce geometrically correct
Gaussian distributions highlights its robustness and adapt-
ability across varying levels of sparsity. The integration
of covisibility-aware supervision ensures that even regions
with minimal training views are adequately represented,
making the method suitable for complex real-world scenes
as shown in Fig. 8.

A.4. Conclusion
The supplementary analysis presented here reinforces the
findings in the main manuscript, demonstrating the effec-
tiveness of CoMapGS in addressing the unique challenges
of sparse view synthesis. By leveraging covisibility maps
and proximity loss, the method achieves geometrically cor-
rect reconstructions, providing significant improvements
over state-of-the-art 3DGS-based approaches.

B. Supplementary Video Overview
In addition to the visualizations and analysis presented in
this document, a supplementary demo video is provided.



Figure 7. Visualization of Gaussian positions after training on the LLFF dataset. FSGS shows overfitting with uncontrolled Gaussian
proliferation, while CoR-GS strongly penalizes low-covisibility regions. CoMapGS achieves geometrically aligned Gaussians across both
high- and low-covisibility regions. Blue and red points indicate proximity classification results (threshold 0.5), with proximity classifiers
trained on 9 views for evaluation.

The video includes:

1. Visualizations of covisibility maps generated for both
LLFF and Mip-NeRF 360 datasets.

2. Enhanced initial point cloud updates guided by covisi-
bility maps.

3. Explanation of the covisibility map-based supervision
approach.

4. Qualitative comparisons with baseline methods, demon-
strating the effectiveness of CoMapGS in recovering un-
derrepresented regions.



Figure 8. Visualization of Gaussian positions after training on the Mip-NeRF 360 dataset. CoR-GS [38] penalizes low-covisibility regions
strongly, leading to incomplete reconstructions. CoMapGS achieves balanced Gaussian distributions with improved geometric alignment
across both high- and low-covisibility regions. Blue and red points indicate proximity classification results (threshold 0.5), with classifiers
trained on 24 views for evaluation.



C. Addressing Concerns of the Proximity Loss
C.1. Visual Results from Ablation Studies
Compared to Fig. 9(a), which uses sparse point clouds
(PCLs), Fig. 9(b) shows that our enhanced PCLs correct the
distorted geometry in the left box. Furthermore, Fig. 9(c),
which incorporates proximity loss, extends supervision be-
yond the frustum—preserving the overall 3D structure and
preventing errors caused by incomplete supervision, as il-
lustrated in the right dotted box (missing chair). As dis-
cussed in Sec. 4.3, this highlights the complementary na-
ture of proximity and photometric losses, leading to robust
optimization across the entire scene.

Figure 9. Ablation results with 3 training views, highlighting the
effects of enhanced initial PCLs and proximity loss on novel view
synthesis.

C.2. Expected Behavior Outside the Frustum
The above ablation results also address concerns regarding
the behavior of gaussians outside the frustum during train-
ing. Conventional 3DGS-based methods relying on photo-
metric or depth losses adjust Gaussian parameters (3D coor-
dinates, color, opacity, rotation, and scale) to improve ras-
terized color or depth images but do not explicitly guide
3D positions to converge. Proximity loss, computed in-
dependently of visibility via an MLP, penalizes wrongly
located Gaussians while preserving geometrically correct
points generated during initialization and densification, re-
sulting in significantly improved geometric accuracy in the
final reconstruction.

D. Implementation and Runtime Efficiency
D.1. Details of the Proximity Classifier
The proximity classifier fp is a three-layer MLP represented

as (Input: R3)
FC+ReLU−−−−−→ R128 FC+ReLU−−−−−→ R128 FC+Sigmoid−−−−−−→

R1, where each activation function follows its correspond-
ing fully connected (FC) layer. The classifier is trained by
minimizing binary cross-entropy loss using the Adam opti-
mizer with a learning rate of 0.001 for 1,000 iterations per
scene. Details on positive and negative data preparation are
provided in Sec. 3.3.

D.2. Time Complexity
Table 4 shows that the proposed CoMapGS introduces only
a marginal overhead compared to CoR-GS [38], primarily
due to the preprocessing step α (+1.12 m) and the addi-
tional cost of running an MLP during training (+5.36 m). α
includes CoMap generation (11.51 s), initial PCL updates
(multiview: 23.20 s, mono-view: 0.24 s), and proximity
classifier training (data generation: 8.41 s, training: 28.06
s).
Compared to RegNeRF [21], a representative NeRF-based
method which requires 69,768 training iterations, both
CoR-GS [38] and our method require 10K iterations.
While [38]+Full runs fp at every iteration, the additional
training cost remains minimal (+5.36 m), keeping it com-
putationally efficient. Inference runs in real-time. Overall,
CoMapGS achieves higher efficiency than RegNeRF while
staying comparable to [38].

Table 4. Time complexities for the Fern scene (3-view) in the
LLFF.

Process RegNeRF [21] [38] [38]+PCLs [38]+Full

Prep.(C)+α · COLMAP C+35.35 s C+72.22 s
Train 307.12 m 8.16 m 7.51 m 13.27 m

Render/Img 9,226.33 ms 3.16 ms 2.56 ms 3.30 ms
* m = minutes, s = seconds, ms = milliseconds

E. Limitations
E.1. MASt3R and Depth Estimation Dependence
Our method relies on MASt3R and depth estimation, which
can potentially propagate errors. To mitigate this, we reg-
ister triangulated 3D points (using MASt3R’s dense cor-
respondences) into COLMAP’s optimized camera poses
with reprojection error validation (≤ 2 pixels), as shown in
Fig. 10. This prevents misaligned geometry across views
and eliminates the need for manual confidence threshold
tuning when using MASt3R’s predicted point clouds di-
rectly. While depth estimation errors may affect mono-view
regions; however, their limited presence in the training set

Figure 10. Illustration of how reprojection error validation ro-
bustly prevents ↓ MASt3R errors (e.g., noisy PCLs ↓, missing
details ↓, and misalignment ↓) when registering 3D points into
COLMAP camera poses.



minimizes the impact. Additionally, we adjust the proxim-
ity loss weight (Eq. 11) based on the scene-level covisibility
score S to further reduce error propagation from depth pre-
dictions.

E.2. Limitations on DTU Dataset
The DTU dataset focuses on masked regions captured in
an artificial, black, and structureless environment, where
both depth prediction and COLMAP camera pose estima-
tion often fail due to a lack of contextual information. While
CoMapGS performs well in generic, real-world scenarios, it
is less effective in controlled settings—or in scenes where
the background is predominantly sky and thus geometri-
cally projected to infinity. In such cases, objects are cen-
trally positioned under controlled lighting, and the scene ge-
ometry is highly artificial, posing challenges for CoMapGS.
Consequently, high-certainty mono-view regions may con-
tain invalid geometry, increasing the likelihood of depth
estimation errors. This, in turn, hinders the enhancement
of initial point clouds and reduces the effectiveness of the
proximity loss.

Nevertheless, our tests on a subset of scenes from the
DTU dataset indicate that performance does not degrade
and remains comparable to the baseline CoR-GS. However,
we were unable to run COLMAP successfully on the full
DTU dataset and thus could not reproduce the results re-
ported by recent methods. Preliminary experiments further
suggest that synthetic or highly constrained environments
may present similar limitations.

E.3. Comparisons with NeRF-based Methods
While our paper does not include an extensive set of
qualitative comparisons with the latest NeRF-based meth-
ods, Fig. 11 presents a representative example. It high-
lights qualitative differences between our method and recent
NeRF-based approaches, illustrating contrasts in rendering
quality and geometric fidelity under sparse-view conditions.

Figure 11. Visual comparisons with the latest NeRF-based meth-
ods.


