Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction

Supplementary Material

A. Implementation Details

A.1. Long video tokenization

We train CoordTok via AdamW optimizer [25] with a con-
stant learning rate of 104, (81, 82) = (0.9,0.999), and
weight decay 0.001. We use a batch size of 256, where each
sample is a randomly sampled 128-frame video. Coord-
Tok is trained in two stages: main training and fine-tuning.
In the main training stage, we reconstruct N = 1024 ran-
domly sampled coordinates and update the model using ¢
loss. In the fine-tuning stage, we reconstruct 16 randomly
sampled frames (i.e., N = 4096 coordinates) and update
the model using a combination of ¢5 loss and LPIPS loss
with equal weights. To speed up training, we use mixed-
precision (fp16). For the main experimental results, we train
CoordTok for 1M iterations and fine-tune it for 50K itera-
tions. For analysis and ablation studies, we train CoordTok
for 200K iterations and fine-tune it for 10K iterations.

Architecture CoordTok consists of a transformer en-
coder that extracts video features from raw videos, a cross-
self encoder that processes video features into triplane rep-
resentations via cross-attention between learnable param-
eters and video features, and a transformer decoder that
learns a mapping from coordinate-based representations
into corresponding patches. In what follows, we describe
each component in detail.

* Transformer encoder consists of a Conv3D patch em-
bedding, learnable positional embedding, and transformer
layers, where each transformer layer comprises self-
attention and feed-forward layers.

* Cross-self encoder consists of plane-wise Conv2D patch
embeddings, transformer layers, and plane-wise linear
projectors, where each transformer layer comprises cross-
attention, self-attention, and feed-forward layers.

* Transformer decoder consists of linear patch embed-
ding, learnable positional embedding, transformer layers,
and a linear projector, where each transformer layer com-
prises self-attention and feed-forward layers.

We provide the detailed architecture configurations for

each model size in Table 5.

A.2. Long video generation

We implement CoordTok-SiT-L/2 based on the original SiT
implementation [27]. The inputs of SiT-L/2 are the normal-
ized triplane representation obtained by tokenizing video
clips of length 128 with CoordTok. To normalize the tri-
plane representation, we randomly sample 2048 video clips

Table 5. Model configurations of CoordTok for each model size.

Model size Module #layers Hidden dim. #heads

Transformer Encoder 8 1024 16
Large Cross-self Encoder 24 1024 16
Transformer Decoder 24 1024 16
Transformer Encoder 8 768 12
Base Cross-self Encoder 12 768 12
Transformer Decoder 12 768 12
Transformer Encoder 8 512 8
Small Cross-self Encoder 8 512 8
Transformer Decoder 8 512 8

of length 128 and calculate the mean and standard devia-
tion for each plane. We train SiT-L/2 via AdamW opti-
mizer [25] with a constant learning rate of 107%, (81, B2) =
(0.9,0.999), and no weight decay. We use a batch size of
64. We train the model for 600K iterations and we update
an EMA model with a momentum parameter 0.9999.

Architecture We use the same structure as SiT, except
that our patch embedding and final projection layers are im-
plemented separately for each plane. To train the uncon-
ditional video generation model, we assume the number of
classes as 1, and we set the class dropout ratio to 0. We
provide the detailed architecture configurations in Table 6.

Table 6. Model configurations of CoordTok-SiT-L/2.

SiT-L/2, #token = 1280 SiT-L/2, #token = 3072

Input dim. (z*¥) 16x16x8 32x32x8
Input dim. (z¥") 16x32x8 32x32x8
Input dim. (z°*) 16x32x8 32x32x8
layers 24 24
Hidden dim. 1024 1024

heads 16 16

Sampling For sampling, we use the Euler-Maruyama
sampler with 250 sampling steps and a diffusion coefficient
w; = o¢. We use the last step of the SDE sampler as 0.04.

B. Evaluation Details

B.1. Long video reconstruction

For our CoordTok, we tokenize and reconstruct 128-frame
videos all at once. Specifically, we encode the video into
a triplane representation and then reconstruct the video by
passing all patch coordinates through the transformer de-
coder at once. In contrast, the baselines can only handle

videos of much shorter lengths (e.g., 16 frames for PVDM-
AE [66]). Therefore, to evaluate the reconstruction quality
of 128-frame videos for the baselines, we split the videos
into short clips and tokenize and reconstruct them. To be
specific, we first split a 128-frame video into shorter clips
suitable for each tokenizer. We then tokenize and recon-
struct each short clip individually using the tokenizer. Fi-
nally, we concatenate all the reconstructed short clips to ob-
tain the 128-frame video.

For evaluating the quality of reconstructed videos, we
follow the setup of MAGVIT [63]. We randomly sample
10000 video clips of length 128, and then measure the re-
construction quality using the metrics as follows:
¢ rFVD [48] measures the feature distance between the dis-

tributions of real and reconstructed videos. It uses the I3D
network [3] to extract features, and it computes the dis-
tance based on the assumption that both feature distribu-
tions are multivariate Gaussian. Specifically, we compute
the rFVD score on video clips of length 128.

* PSNR measures the similarity between pixel values of
real and reconstructed images using the mean squared er-
ror. For videos, we compute the PSNR score for each
frame and then average these frame-wise PSNR scores.

* LPIPS [68] measures the perceptual similarity between
real and reconstructed images by computing the feature
distance using a pre-trained VGG network [36]. It ag-
gregates the distance of features extracted from various
layers. For videos, we compute the LPIPS score for each
frame and then average these frame-wise LPIPS scores.

* SSIM [55] measures the structural similarity between real
and reconstructed images by comparing luminance, con-
trast, and structural information. For videos, we compute
the SSIM score for each frame and then average these
frame-wise SSIM scores.

B.2. Long video generation

For sname-SiT-L/2, we generate the tokens corresponding
to a 128-frame video all at once and then decode these to-
kens using CoordTok. In contrast, baselines iteratively gen-
erate 128-frame videos. For instance, PVDM and HVDM
generate the next 16-frame video conditioned on the previ-
ously generated 16-frame video clip.

For evaluating the quality of generated videos, we
strictly follow the setup of StyleGAN-V [39] that calculates
the FVD scores [48] between the distribution of real and
generated videos. To be specific, we use 2048 video clips
of length 128 for each distribution, where the real videos
are sampled from the dataset used to train generation mod-
els (i.e., the UCF-101 dataset [42]).

B.3. Analysis

* Dynamics magnitude To measure how dynamic each
video is, we use the pixel value differences between con-

secutive frames. To be specific, we compute the dynamics
magnitude for each pair of consecutive frames, calculate
the mean of these values, and then take the logarithm.
Here, dynamics magnitude of two frames f! and f? of
resolution H x W can be defined as follows:

W) = S S b))
’ B HW h=1w=1 Fh o S

where f} denotes the RGB values at coordinates (h, w)
of frame f* and dy denotes f-distance of RGB pixel val-
ues. In Figure 7a, we standardize the video dynamics
score into a range of 0 to 100.

* Frequency magnitude To measure the frequency magni-
tude, we use the metric proposed in Yan et al. [60] that
utilizes a Sobel edge detection filter. To be specific, to
get the frequency magnitude, we apply both horizontal
and vertical Sobel filters to each frame to compute the
gradient magnitude at each pixel. We then calculate the
average of these magnitudes across all pixels.

C. Baselines

C.1. Long video reconstruction

‘We describe the main idea of baseline methods that we used
for the evaluation. We also provide the shape of tokens of
baselines in Table 7.

* MaskGiT-AE [5] uses 2D VQ-GAN [8] that encodes an
image into a 2D discrete tokens.

* TATS-AE [11] introduces 3D-VQGAN that compresses
a 16-frame video clip both temporally and spatially into
3D discrete tokens.

e MAGVIT-AE-L [63] also introduces 3D-VQGAN but
improves architecture design (e.g., uses deeper 3D dis-
criminator rather than two shallow discriminators for 2D
and 3D separately, uses group normalization [57] and
Swish activation [32]) and scales up the model size.

* PVDM-AE [66] encodes a 16-frame video clip into fac-
torized triplane representations.

* LARP [52] encodes videos into 1D arrays by utilizing a
next-token prediction model as a prior model.

* OmniTokenizer-DV [53] introduces image-video joint
VQGAN that compresses a 17-frame video clip into 3D
discrete tokens with more advanced architecture design
(e.g., uses both 2D and 3D patch embedding layers to sup-
port both image and video tokenization, uses transformer
backbone with causal attention layers).

¢ OmniTokenizer-CV [53] uses the same architecture de-
sign as OmniTokenizer-DV, but replaces the VQ loss with
KL loss so that it compresses a 17-frame video clip into
3D continuous latent vectors.

Table 7. Token shapes of video tokenization baselines

Method Input shape Token shape
MaskGiT-AE [5] 128x128x%3 8x8
TATS-AE [11] 16x128x 1283 4x16x16
MAGVIT-AE-L [63] 16x128x 1283 4x16x16
PVDM-AE [66] 16x128x 128 %3 (16x16) x 3
LARP [52] 16x128x128x%3 1024
OmniTokenizer [53] (1+16)x128x128x3 (1+4)x16x16

C.2. Long video generation

‘We describe the main idea of baseline methods that we used
for the evaluation.

* MoCoGAN [47] proposes a video generative adversarial
network (GAN; [12]) that has a separate content genera-
tor and an autoregressive motion generator for generating
videos.

* MoCoGAN-HD [46] also proposes a video GAN with
motion-content decomposition but uses a strong pre-
trained image generator (StyleGAN2 [20]) for a high-
resolution image synthesis.

* DIGAN [65] interprets videos as implicit neural repre-
sentation (INR; [38]) and trains GANs to generate such
INR parameters.

¢ StyleGAN-V [39] also introduces an INR-based video
GAN with a computation-efficient discriminator.

* PVDM-L [66] proposes a latent video diffusion model
that generates videos in a projected triplane latent space.

« HVDM [21] proposes a latent video diffusion model that
generates videos with 2D triplane and 3D wavelet repre-
sentation.

e Latte-L/2 [10] proposes a latent video diffusion trans-
former that generates video by processing latent vectors
with alternating spatial and temporal attention layers.

D. Additional Analysis

Computational costs We provide the GPU memory us-
age during training in Figure 1a, and FLOPs during training
in Figure 9. We find that our decoder design allows the effi-
cient long video tokenization in terms of both GPU memory
and FLOPs.

Analysis on the number of tokens We provide the recon-
struction quality of CoordTok with 1280 and 3072 tokens in
Table 8. Although there is no significant difference in the
reconstruction quality between CoordTok with token sizes
of 1280 and 3072, training SiT-L/2 with the 1280 tokens
results in substantially better generation quality (see Sec-
tion 3.3).

4096 / Vo

— PVDM-AE
> — TATS-AE
£ LARP
o — OmniTokenizer-CV
=
go — CoordTok (Ours)
5 2048
°
)
S
5121

128 -4 . . .
16 64 128 256
Video length
Figure 9. FLOPs when training video tokenizers on 128 x 128 res-
olution videos with varying lengths.

Table 8. Reconstruction quality of CoordTok with varying number
of token sizes, evaluated on 128-frame videos. | and 1 denotes
whether lower or higher values are better, respectively.

#tokens rFVD] PSNR{ LPIPS| SSIM{

1280 102.9 28.6 0.066 0.892
3072 100.5 28.7 0.065 0.894

Analysis on the effect of LPIPS fine-tuning In Table 9,
we investigate the effect of the additional fine-tuning phase,
where we train CoordTok with both ¢ loss and LPIPS loss
[68] for 50K iterations after training CoordTok with ¢5 loss
for 1M iterations. We find that fine-tuning phase improves
the perceptual quality (i.e., tfFVD score: 188.3 — 102.9,
and LPIPS score: 0.141 — 0.066), but degrades the pixel-
level reconstruction quality (i.e., PSNR: 30.3 — 28.6, and
SSIM: 0.905 — 0.892).

Table 9. Effect of LPIPS fine-tuning phase for CoordTok. | and 1
denotes whether lower or higher values are better, respectively.

Phase Iters loss rFVD] PSNRfT LPIPS| SSIM?T
1 IM 12 186.3 30.3 0.141 0.905
2 +50K {>+LPIPS 102.9 28.6 0.066 0.892

E. Additional Quantitative Results

16-frame reconstruction quality To further evaluate the
quality of reconstructed videos from tokenizers, we report
the rFVD score on video clips of length 16 for the Coord-
Tok and other tokenizers with varying number of token sizes
in Figure 10. For evaluation, we use 10000 video clips of
length 128, which are also used to measure the rFVD score
on 128-frame videos. We split each 128-frame video into
16 non-overlapping sub-clips, and then compute the rFVD
score on totally 80000 video clips of length 16.

W TATS-AE
9004 ® PVDM-AE
LARP
A OmniTokenizer-CV
700+ Y CoordTok (Ours)
2600
£ |a
e
|
2004
ol ‘ ‘ A
O N] N \%
Qo < A &)
S & & &
Token Size

Figure 10. rFVD scores of video tokenizers, evaluated on 16-
frame videos, with respect to the token size used for encoding 128-
frame videos. | indicates lower values are better.

F. Additional Qualitative Results

In Figure 11, we provide additional video reconstruction re-
sults from CoordTok. In addition, in Figures 12 and 13,
we provide unconditional video generation results from
CoordTok-SiT-L/2.

3
=
T
P
o
o
o

CoordTok

t=0 t=32 t =064 t=96 t=20 t=32 t =064 t=96 t=20 t=32 t =064 t=96

Figure 11. Additional 128-frame, 128 x 128 resolution video reconstruction results from CoordTok (Ours) trained on the UCF-101 dataset
[42]. For each frame, we visualize the ground-truth (GT) and reconstructed pixels from CoordTok.

t=0 t=16 t =32 t =48 t =64 t=280 t=96 t=112

Figure 12. Unconditional 128-frame, 128 x 128 resolution video generation results from CoordTok-SiT-L/2 trained on 128-frame videos
from the UCF-101 dataset [42].

t=0 t

Figure 13. Unconditional 128-frame, 128 x 128 resolution video generation results from CoordTok-SiT-L/2 trained on 128-frame videos
from the UCF-101 dataset [42].

	Introduction
	Method
	Encoder
	Decoder

	Experiments
	Experimental Setup
	Long video tokenization
	Long video generation
	Analysis and ablation studies

	Related Work
	Conclusion
	Implementation Details
	Long video tokenization
	Long video generation

	Evaluation Details
	Long video reconstruction
	Long video generation
	Analysis

	Baselines
	Long video reconstruction
	Long video generation

	Additional Analysis
	Additional Quantitative Results
	Additional Qualitative Results

