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Figure 1. Qualitative Result in terms of predicted depthmaps. We compare Pow3R with DUSt3R on one of the Megadepth [30] outdoor
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scenes (from the validation set). For this evaluation, we feed camera intrinsics, pose as well as 2048 sparse point clouds. The figure clearly
demonstrates that DUSt3R fails to accurately capture the statue, while Pow3R reconstructs it correctly.

1. Further Experiments on the Impact of Guid-
ing

In Table 1 of the main paper, we perform experiments on the
Habitat validation dataset to study the impact of each auxil-
iary modality on the reconstruction accuracy in terms of dif-
ferent metrics. In Table 1, we perform the same experiment
on data generated with Infinigen [40]. Compared to Habi-
tat, InfiniGen offers two advantages: (i) InfiniGen is free of
artifacts, which can be numerous in the Habitat dataset due
to acquisition problem on windows, mirrors, complex sur-
faces, efc.; (ii) there is no risk of training data contamination
or overfitting, as InfiniGen is not part of the training set at
all. Nevertheless, we observe similar results and trends than
on Habitat, highlighting the robustness of these findings.

2. Multi-View Depth Estimation results

In Section 4.2 of main paper (multi-view depth evaluation),
we provide a subset of all comparisons to the state of the
art for the sake of space. The full table can be found in
Table 2. There, we present the full table of Pow3R com-
pared to classical approaches like COLMAP [43], and other
learning-based approaches on multi-view depth estimation.
We evaluate the performance on KITTI [16], ScanNet [12],
ETH3D [44], DTU [2], Tanks and Temples [26], follow-
ing protocol outlined in RobustMVD [45]. For DUSt3R
and Pow3R models with 224 resolution, we naively down-
size images to 224 x 224. For 512 resolution, we find
the nearest aspect ratio within our training protocol and
resizing such that the largest side is 512 pixels. We cat-
egorize the approaches into four groups: classical meth-



aux. modalities focal depth rel. pose
K1 K2 D1 D2 RT | acc@1.015 T@1.03 RRA@2° RTA@2°
DUSBR | x x x x x |284 75.9 64.6 272
Pow3R | x x x x x |298 75.1 66.5 304
VX X x x| 60.7(+309) 755 (+04) 70.3 (+3.8) 35.2 (+4.8)
x v X x X |605+30.7) 758 (+0.7) 709 (+4.4) 37.0 (+6.6)
v v o x x x 89.8(+60.0) 76.2 (+1.1) 73.7 (+7.2) 50.0(+19.6)
X X v X X 34.3 (+4.5) 87.9(+12.8) 70.9 (+4.4) 35.3 (+4.9)
X X x v x 34.3 (+4.5) 88.3(+13.2) 71.0 (+4.5) 353 (+4.9)
x X v v X 40.9(+11.0)  94.9(+19.8) 74.6 (+8.1) 46.5(+16.1)
X X x x v | 349 (+5.1) 76.0 (+0.9) 86.6(+20.1) 54.3(+23.9)
v vV vV v x| 98.0(+68.1) 95.4(+20.3) 82.2(+15.7) 71.0(+40.6)
v vV ox x v 190.6(+60.8) 77.0 (+1.9) 91.1(+24.7) 72.2(+41.8)
X X v v v |502+204) 95.0(+19.9) 93.0(+26.5) 70.5(+40.1)
V OV vV vV V| 985(+68.6) 95.4(+20.3) 97.4(+30.9) 90.2(+59.8)

Table 1. Impact of guiding at test time for models trained at
224 %224 resolution. We report performances on InfiniGen for
DUSt3R, which cannot handle auxiliary modalities, and our sin-
gle model with different sets of modalities; we show in green the
absolute improvement w.r.t. the results without auxiliary modality.

ods, learning-based approach utilizing camera poses and
depth range, learning-based approaches with ground-truth
intrinsics only, and DUSt3R and Pow3R. Pow3R, when pro-
vided with both camera pose and intrinsics significantly out-
performs most of existing methods across the majority of
datasets. Pow3R-512 performs comparably to or slightly
worse than DUSt3R-512 but it is noteworthy that Pow3R is
not consistently trained on RGB images only, and operates
at almost the same number of parameters and compute.

Reimplementation of Evaluation Code. DUSt3R' in
Table 2 refers to the results reported in the origi-
nal DUSt3R paper, while ‘DUSt3R (repr.)’ denotes
our re-implementation.  After observing that our re-
implementation with the official code and checkpoint
reaches better performance than the ones published, we
have communicated with the authors to check for any is-
sue. Authors have confirmed the presence of a bug in their
internal codebase that was the cause of performance degra-
dation.

3. High-resolution processing with Pow3R

Overall. Providing camera intrinsics as auxiliary input en-
ables us to upsample the pointmaps by sequentially process-
ing crops in a sliding window scheme. This is feasible since
we train on non-centered cropped images along with their
camera intrinsics. As explained in Section 3.1 of the main
paper, we densify the camera intrinsics as rays, and feed
them in the encoder. This allows us to deal with arbitrary
aspect ratios and high-resolution images by processing im-
age crops, which DUSt3R is not capable of. A full reso-
lution processing is not possible neither at test time nor at
train time. This is clearly shown in Table 2 of the main
paper, where naively feeding the high-resolution images to
a low-resolution network degrades performance. Likewise,
training on high resolution images is computationally pro-
hibitive. Our multi-stage schemes, based on smaller crops,

allow for processing full resolution images, without training
in such high resolutions.

Asymmetric sliding. There are various ways to perform
high-resolution processing. In the monocular case where
we would like to upsample pointmaps, we feed a downsam-
pled coarse input image alongside the same high-resolution
cropped image as shown in Figure 4 of the main paper or in
Fig. 2 of this Supplementary.

Coarse-to-fine strategy. Alternatively, we can feed two
high-resolution image crops to the network, in which
case we can condition the outcome based on an initial
coarse pass. Here, conditioning consists in feeding coarse
depthmap (estimated during the initial coarse pass, where
we simply downscale images) as auxiliary information for
the two high-resolution crops. The resulting pointmaps for
each crop are scale-invariant; therefore, we solve their scale
by simply computing the median scale factor in overlapping
areas. We refer to the attached video for additional details
and visualizations.

KITTI. The KITTI dataset, with its unique resolution of
370 x 1226, and non-typical aspect ratio, presents a chal-
lenging test-case in a zero-shot settings. Using our coarse-
to-fine approach, we can handle high-resolution images ef-
ficiently and produce detailed and accurate outputs as the
Figure 4 of the main paper, as well as in Figure 2.

4. Controllability

In Section 4.1 of the main paper, we quantitatively eval-
uate the controllability of Pow3R in Figure 6 of the pa-
per. In other words, we study what happens when the pro-
vided auxiliary information deviates too much from its true
ground-truth value.

Video results. We refer to the attached video showcasing
the impact of providing auxiliary information for a given
image pair from MegaDepth (validation set) in terms of
global 3D reconstruction error. We observe that provid-
ing intrinsics and pose leads to noticeable improvements yet
the largest impact is clearly attained when providing sparse
depth, especially for pairs with large depths of field.
Extreme cases. We also show qualitative results in Figs. 3
and 4. The model adheres to the guidance until it reaches a
breaking point, at which point it stops functioning normally
and output broken pointmaps with very low associated con-
fidence maps, as exemplified in Fig. 4 for fl/fglt =0.1.

5. Noises in the ground-truth depth annota-
tion: NYUd - Section 4.1 of the main paper

In Figure 5, we highlight the erroneous ground-truth an-
notations present in the NYUd [46] dataset. Specifically,
the red contours in the visualization indicate regions where
the discrepancy between the ground-truth and the predicted



Methods GT GT GT Align KITTI ScanNet ETH3D DTU T&T Average
Pose Range Intrinsics rell 771 rell Tt rell 77 rell] 771 rell 71 vrell 7 1time(s)|
COLMAP [42, 43] v X v X 12.0 582 14.6 34.2 164 55.1 0.7 965 27 950 9.3 67.8 ~3min
COLMAP Dense [42,43] v X v X 269 527 38.0 225 89.8 232 20.8 69.3 25.7 764 40.2 48.8 ~ 3 min
MVSNet [64] v v v X 227 36.1 246 204 354 314 (1.8)(86.0) 83 73.0 18.6 494 0.07
MVSNet Inv. Depth [64] v v v X 18.6 30.7 227 209 21.6 356 (1.8)(86.7) 6.5 746 142 49.7 0.32
Vis-MVSNet [71] v v v X 95 554 89 335 108 433 (1.8) (874) 4.1 872 7.0 614 0.70
MVS2D ScanNet [63] v v v x 212 87 (272) (53) 274 438 172 9.8 292 44 244 6.6 0.04
MVS2D DTU [63] v v v x 2266 0.7 323 11.1 99.0 11.6 (3.6) (64.2) 258 28.0 77.5 23.1 0.05
MVS-Former++ DTU [7] vV v X 292 152 152 219 214 325 (1.2) 91.9) 7.6 71.5 149 46.6 0.05
DeMon [55] v X v X 16.7 134 750 0.0 19.0 16.2 237 115 17.6 183 304 119 0.08
DeepV2D KITTI [53] v X v X (20.4)(16.3) 258 8.1 30.1 94 246 82 385 9.6 279 103 143
DeepV2D ScanNet [53] v X v x 619 52 (3.8) (60.2) 18.7 28.7 9.2 274 335 380 254 319 215
MVSNet [64] v X v X 14.0 35.81568.0 5.7507.7 8.3(4429.1) (0.1)118.2 50.7 13274 20.1 0.15
MVSNet Inv. Depth [64] v X v X 296 81 652 285 603 5.8 (28.7) (489) 514 146 470 212 0.28
Vis-MVSNet [71] v X v X 10.3 544 849 156 515 174 (3742) (1.7) 21.1 65.6 108.4 31.0 0.82
MVS2D ScanNet [63] v X v x 734 00 (4.5) (54.1) 30.7 144 50 579 564 11.1 340 275 0.05
MVS2D DTU [63] v X v x 933 00 515 1.6 780 0.0 (1.6) (92.3) 87.5 0.0 624 18.8 0.06
CER-MVS [34] v X v X 143 322 21.1 243 11.7 475 41 713 64 8.1 115 515 53
Robust MVD Baseline [45] v X v X 71 419 74 384 9.0 426 2.7 820 5.0 75.1 6.3 56.0 0.06
DeMoN [55] X X v lt] 155 152 12.0 21.0 174 154 21.8 16.6 13.0 232 16.0 183 0.08
DeepV2D KITTI [53] X X v med (3.1)(74.9) 237 11.1 27.1 10.1 248 8.1 341 9.1 226 227 207
DeepV2D ScanNet [53] X X v med 10.0 362 (4.4) (54.8) 11.8 29.3 7.7 330 89 464 8.6 399 357
DUSt3R 224-NoCroCo X X X med 15.14 21.16 7.54 40.00 9.5140.07 3.56 62.8311.1237.90 9.3740.39 0.05
DUSt3R 224 [58] X X X med 15.39 26.69 (5.86) (50.84) 4.7161.74 2.76 77.32 5.5456.38 6.8554.59 0.05
DUSt3R(repr.) 224 [58] X X X med 92 329 (4.2) (582) 4.7 619 2.8 773 55 565 5275735 0.05
Pow3R 224 X X X med 7.0 39.7 (4.2) (582) 4.5 625 2.9 75 5.4 574 4.8058.56 0.05
Pow3R 224 w/ RT v X X med 7.0 395 (4.2) (58.7) 44 63 2.9 75 52 588 4.7459.00 0.05
Pow3R 224 w/ K X X v med 64 45 (42) (57.77) 45 633 25 774 55 553 4.6259.74 0.05
Pow3R 224 w/ K+RT v X v med 64 446 (4.1) (58.1) 4.5 632 23 808 52 57.6 4.5060.86 0.05
DUSt3RT 512 [58] X X X med 9.11 39.49 (4.93) (60.20) 2.9176.91 3.52 69.33 3.1776.68 4.7364.52 0.13
DUSt3R(repr.) 512 [58] X X X med 54 495 (3.1) (71.8) 3.0 76 39 686 33 751 37368.19 0.13
Pow3R 512 X X X med 5.7 457 (3.2) (68.8) 3.0 74.7 30 743 33 76.6 3.6468.02 0.13
Pow3R 512 w/ RT v X X med 5.7 458 (3.2) (69.7) 29 75.6 33 71.6 32 779 3.6668.12 0.13
Pow3R 512 w/ K X v med 5.3 483 (3.1) (70.8) 29 76 1.6 899 32 773 3227246 0.13
Pow3R 512 w/ K+RT v X v med 53 487 (3.1) (714) 28 77.1 1.5 911 3.2 782 3.18 733 0.13

Table 2. Multi-view depth evaluation: Pow3R, when using both pose and intrinsics, outperforms DUSt3R as well as most other ap-
proaches, including both classical methods and learning-based techniques that utilize poses and depth ranges. DUSt3R refers to the results
reported in the original DUSt3R paper, while ‘DUSt3R (repr.)’ denotes our re-implementation.

depth values exceeds a defined threshold. These regions of-
ten correspond to areas with edges or fine-structural details,
that offer surfaces tangential to the viewing ray, and are not
easy to annotate accurately. As in Figure 5, Pow3R can
inpaint the sparse depthmap consistently and produce high-
quality depthmaps. Note again that NYUd dataset is not
part of our training set yet Pow3R performs better than sev-
eral depth completion models including [23, 51, 52, 59, 62]
across varying input sparsity depth ratios, as illustrated in
Figure 5 of main paper. We posit that a significant portion of

the error observed is attributable to the aforementioned in-
accuracies in the ground-truth annotations of NYUd dataset.

6. Extended Related work

Structure-from-Motion. Traditional SfM methods typi-
cally involve non-differentiable components, such as key-
point detection, matching, and incremental camera reg-
istration; however, VGGSfM [57] integrates recent ad-
vancements in deep learning to create an end-to-end train-
able system. Graph attention networks can also be lever-



Figure 3. Controllability test on rotation: We provide incorrect camera rotation by -40 degree and 40 degree along y axis each in
addition to the ground truth rotation, and render all of scenes from the same location. The quality of reconstruction decreases as the camera
rotation deviates from the ground-truth.

aged [6] to learn SfM by processing 2D keypoints across
multiple views, and computing corresponding camera poses
and 3D keypoints. MASt3R-SfM [13] integrates SfM
pipeline within MASt3R [28], which eliminates the need
for RANSAC by employing robust local reconstructions,
and conducts optimization through successive gradient de-
scents, first using a 3D matching loss and then refinining
with a 2D reprojection loss. Pow3R differs from traditional
approaches by leveraging attention between image patches
along with auxiliary inputs such as camera intrinsics, ex-
trinsics and sparse depths, to discover camera poses directly
from pointmaps.

MYVS and 3D reconstruction. MVS aims to reconstruct
dense 3D surface through triangulation from multiple view-

points, traditionally with hand-crafted features [14, 15,
43]. Learning-based approaches have been incorporated
for MVS, followed by the emergence of Neural Radiance
Fields (NeRFs) and its extended works [18, 27, 35, 37, 39,
47, 64, 66]. The need for camera parameters and sparse
scene initialization pushed NeRF and Gaussian Splatting
(GS) [24] based models to leverage SfM pipelines such as
COLMAP [42]. The quality of these approaches depends on
the accuracy of camera parameters, and the error from cam-
eras is not often rectified during the training. There have
been attempts to update camera parameters while optimiz-
ing the 3D scene [9, 11, 22, 31, 38, 60]; however, many
of these approaches require known camera intrinsics, good
initialization, and usually rely on a weakly supervised pho-



Figure 4. Controllability test on focal: We feed incorrect focal length on K*, while providing the second camera with the ground-truth
K. The model fails to generate accurate pointmaps for blatantly false input focals, e.g. when the focal ' is set to 0.1 fglt. The network
starts to recover in this case when f* > 0.5 fglt.

Input Ground Truth Ours

error is above the threshold. Sparse depth indicates that these inaccurate annotations are not provided as the input to the network. Errors
are in log scale, and Pow3R is tested on zero-shot setting.



tometric loss. Single-view based approaches [8, 10, 20,
21, 32, 41, 50, 69] have been explored as they are less de-
pendent upon camera poses, but these models usually re-
quire aligned datasets or cannot resolve the scene ambigu-
ity completely. The DUSt3R framework departs from these
approaches as it aims to do unconstrained 3D reconstruc-
tion via supervised pointmap regression, without relying on
camera parameters. In Pow3R, we further develop DUSt3R
by allowing the network to take auxiliary inputs such as
sparse depth, camera intrinsics and camera pose. Natu-
rally incorporating existing scene and camera priors seam-
lessly with RGB images further improves performance, and
importantly it enables full-resolution processing of images,
which was not easily achievable prior to this work [29].

RGB-to-3D. From a single image, combined with monoc-
ular depth estimators and camera intrinsics, networks can
predict pixel-aligned 3d point clouds [5, 49, 67, 68].
SynSin [61] does new-view synthesis by predicting depth,
generating point clouds, and using the differentiable ren-
derer to synthesize images, and it computes the camera in-
trinsics by temporal consistency within video frames or off-
the-shelf estimator. For multi-view settings, [53, 55, 72]
have been proposed to build a differentiable SfM, but the
camera intrinsics are required.

Focal Estimation. Classical approaches rely on paral-
lel lines [17] that intersect at vanishing points for single-
image calibration, and vanishing point estimations were
in [3, 25, 54, 70]. Learning-based methods [19, 33, 70]
were introduced to regress or classify camera parameters
into bins, but there were not as accurate as traditional ap-
proaches. Recent methods combine both traditional and
learning-based approaches [56, 74]. In our case, the focal
length can be directly recovered from the pointmap repre-
sentation; Our contribution is orthogonal to these lines of
work in the sense that Pow3R optionally incorporate sparse
depth and relative pose to improve the quality of prediction,
again unlike DUSt3R.

Guiding 3D. Several Simultaneous Localization and Map-
ping (SLAM) methods incorporate both RGB and RGB-D
images like ORB-SLAM?2 [36]. DROID-SLAM [I] is a
neural-network based system for SLAM that process visual
data from monocular, stereo and RGB-D cameras, and it
can leverage stereo or RGB-D inputs at test time indiffer-
ently. These pipelines however are heavily engineered. In
this work, we wish to follow the philosophy from DUSt3R
where a single network regresses all relevant information,
optionally leveraging auxiliary information.

7. More Qualitative Results

We showcase the impact of Pow3R when combined with
auxiliary input. In the following, we provide examples re-
sults both in terms of depthmap and pointmap predictions.

For each figure, the auxiliary information given to the net-
work are the intrinsics, relative poses and 2048 sparse depth
values except RealEstate 10K [73] for which no depth infor-
mation is available.

Using sparse depthmaps. We compare depthmaps pre-
dicted by from Pow3R and DUSt3R in terms of visual qual-
ity in Figures 1, 6, 7, 8. Results for Pow3R are consistently
better, with much less failure cases than with DUSt3R,
which is expected given Pow3R receives additional priors.

Visualizing 3D pointmaps with Cameras. Likewise,
we showcase the impact of auxiliary information against
DUSt3R, this time in terms of overall 3D reconstruction as
well as camera locations in Figures 10,11,12,13,14. Pow3R
reconstructs 3D scenes better than DUSt3R in general,
while DUSt3R generates 3D scenes almost on par with
DUSt3R in some indoor scenes like Figures 13, 14. Even
in these scenes, Pow3R predicts the camera location more
precise than DUSt3R, which demonstrates that Pow3R per-
forms better with more auxiliary inputs.
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Figure 8. Qualitative Result on depthmap. We evaluate Pow3R against DUSt3R on an indoor scene from the ARKit [4] dataset.We feed
to Pow3R camera intrinsics, pose and 2048 sparse depthmap. While DUSt3R generally builds a good depthmap, but Pow3R faithfully
reconstructs the glass window of the door and small objects on the fridge.
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Figure 9. Qualitative Result on depthmap. We conduct a comparison on an outdoor scene from the Waymo [48] dataset. We provide
to Pow3R the camera intrinsics, pose and 2048 sparse point clouds from LiDAR. While DUSt3R generates a good depthmap from RGB
images only, Pow3R shows better performance at capturing details of cars in the parking lot and trees.
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Figure 10. Qualitative Result on 3D reconstruction and camera estimations. We evaluate our model on one of the Megadepth [30]
outdoor scenes. Inputs include camera pose, intrinsics as well as 2048 sparse point clouds. While DUSt3R attempts to reconstruct the
scene from two extreme viewpoints, it struggles with scale ambiguity and improper camera registration. In contrast, Pow3R achieves better
reconstruction as well as accurate camera registration.
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Figure 11. Qualitative Result on 3D reconstruction and camera estimations. We evaluate our model on one of theBlendedMVS [65]
indoor scene. We provide camera intrinsics, extrinsic and 2048 sparse depthmap. While DUSt3R incorrectly predicts the depth of field and
struggles with the statue, Pow3R generates the 3D scene along with cameras accurately.
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Figure 12. Qualitative Result on 3D reconstruction and camera estimation on an outdoor scene from the Megadepth [30] dataset. We
feed camera intrinsics, pose and 2048 sparse depths. Pow3R excels at reconstructing the depth of field and the camera locations, contrary
to DUSt3R.
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Figure 13. Qualitative Result on 3D reconstruction and camera estimation on an indoor scene from RealEstate10K [73] dataset. In
this evaluation, we only provide the camera intrinsics and extrinsic, as RealEstate 10K dataset does not have point clouds or depthmaps.
Both Pow3R and DUSt3R produce faithful 3D reconstructions from two diverging viewpoints, Pow3R demonstrates better performance at
predicting camera locations than DUSt3R.
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Figure 14. Qualitative Result on 3D reconstruction and camera estimation on an indoor scene from ARKit [4] dataset. We provide to
Pow3R camera intrinsics, pose and 2048 sparse depth points. Both Pow3R and DUSt3R generate a reasonable 3D scene from two almost
non-overlapping viewpoints, Pow3R providing more accurate camera locations than DUSt3R.
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