
Supplementary Material of “Scalable Video-to-Dataset Generation for Cross-
Platform Mobile Agents”

iOS Android Total

Train 9,755 9,970 19,725
Val 246 249 495
Test 50 50 100

Total 10,051 10,269 20,320

Table A. Distribution of videos across different splits in MON-
DAY. Validation and test sets are manually balanced between plat-
forms, while training set maintains natural distribution from col-
lection process.

0 3 6 9 12 15
Video Duration (minutes)

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Figure A. Distribution of video duration in minutes. Red vertical
dotted line stands for the average duration of 2.66 minutes. The
majority of videos (77.8%) fall between 1-5.5 minutes, with a peak
at 1.05 minutes.

A. More Statistics about MONDAY Dataset

A.1. Dataset Distribution

Our dataset is split into 19,725 training videos, 495 valida-
tion videos, and 100 test videos, as shown in Table A. The
validation set contains an equal distribution of 246 iOS and
249 Android videos, while the test set maintains the same
balanced 50/50 split between platforms. The training set in-
cludes 9,755 iOS and 9,970 Android videos, reflecting the
natural distribution from our collection process.

As shown in Figure A, our dataset primarily consists of
concise, focused instructional videos with an average du-
ration of 2.66 minutes. The duration distribution shows a
clear peak at 1.05 minutes, with 77.8% of videos falling be-
tween 1-5.5 minutes. This distribution reflects the typical
length of mobile OS instructional content, which tends to
focus on specific, well-defined tasks.

The distribution of actions in our dataset reflects real-

scroll
8.5%

long press 1.1%

 touch

79.8%

hardware

6.7%
multi touch

0.8%
typing

2.7%
zoom

0.3%

Action
Types

Figure B. Action type distribution in our dataset shows touch ac-
tions dominate at 79.83%, followed by scroll (8.53%) and other
actions.

world usage patterns, as illustrated in Figure B. Touch ac-
tions are the most frequent (79.83%), followed by scroll
(8.53%), hardware interactions (6.73%), typing (2.68%),
long press (1.11%), multi touch (0.80%) and zoom (0.32%).

In terms of app coverage, we checked which mobile app
each video of MONDAY is for: it includes 2,479 unique
apps across 20,337 videos. The distribution between OS na-
tive and third-party apps (37.6% : 62.4%) demonstrates bal-
anced representation of mobile device usage. Third-party
app usage aligns with real-world scenarios, as shown by
top applications: Instagram (3.72%), Facebook (2.60%),
YouTube (2.08%), Twitter (1.86%), WhatsApp (1.75%),
and so on.

A.2. Computational Cost Analysis
Our framework’s processing time is proportional to the in-
ference time of its core components: one Paddle OCR infer-
ence and two GroundingDINO inferences (for phone screen
and icon detection) per frame, plus three GPT-4o queries per
action identification. For a typical three minute video, the
total processing time prior to the GPT-4o is approximately
9.7 minutes on a single NVIDIA Titan Xp GPU. The total
cost for identifying actions for the 20,320 videos with GPT-
4o was $6976, approximately $0.34 per video.

To better compare its effectiveness, we measure the cost
when we ask the annotator to annotate the scene detection

In
iti

al
 C

ol
le

ct
io

n
(1

29
K

)

Ph
on

e
Sc

re
en

 (
90

k) M
ob

ile
(2

2k
)

N
o

ha
nd

(3

6k
) Fi
na

l
(2

0k
)

~70%

~40%

~60% ~90%

Figure C. Filtering stages in video collection process. Starting
from 129K YouTube videos with English transcripts and duration
under 15 minutes, each stage progressively filters videos to ensure
quality and relevance.

and action identification for 100 test videos used in Section
4.1.1. Scene transition and action annotation takes 12 min-
utes and costs $5.76 per video on average from an expert
annotator. If there are good open-source models that per-
form reasonably well for action identification, then we can
further reduce the cost by replacing GPT-4o with these al-
ternatives.

B. Details about Video Collection
Our dataset collection process starts by mining mobile OS-
related content from CommonCrawl web posts in the C4
[40] and Dolma [46] datasets. To ensure the mobile OS nav-
igation topic, we first filter these posts using an expanded
version of AndroidHowTo’s domain whitelist [23], which
we augmented to include iOS-related websites alongside
the original Android domains. We then employ GPT-3.5
Turbo Instruct [36] to analyze the main body text of each
filtered post, identifying titles that describe iOS/Android
phone navigation tasks (responding with “N/A” for irrele-
vant content). These extracted titles are then used as search
keywords for collecting relevant YouTube videos.

From our initial collection of 129K videos that have En-
glish transcripts and are shorter than 15 minutes, we imple-
ment a multi-stage filtering process, as shown in Figure C:

• Process videos at 2 FPS using GroundingDINO, re-
quiring successful detection in at least for 30 seconds
(retaining 70% of videos)

• Process videos using Google MediaPipe hand land-
mark detection and filter out videos where hands ap-
pear, ensuring clean views of the interface (keeping
40% of remaining videos)

• Sample 5 frames in equidistance and ask GPT-4o to
determine OS type (‘iOS’, ‘Android’, ‘Windows Mo-
bile’, ‘BlackBerry OS’, ‘Multiple OS’, or ‘None’) and
device type (‘Phone’, ‘Tablet/Pad’, ‘Watch’, ‘Laptop’,

‘Multi-device’, or ‘None’), preserving 60% of videos
• Remove videos with more than 55 detected scenes to

ensure focused, single-task demonstrations
• After sampling the evaluation dataset, remove contam-

inated videos identified by an n-character overlap [34]
(n=30) in video titles

This multi-stage filtering process results in our final
dataset of 20K videos capturing clear, unobstructed mobile
OS navigation procedures while retaining narrative context
through transcripts.

C. Details about MONDAY Framework
Our framework, illustrated in Figure 2, consists of three
main components working together to extract mobile OS
navigation procedures from instructional videos. The
framework begins with scene transition detection (Section
3.2), which identifies meaningful state changes in the mo-
bile interface using OCR-based analysis. This is followed
by UI element detection (Section 3.3.1), which combines
icon detection and text recognition to identify interactive
elements. Finally, our three-step action identification pro-
cess (Section 3.3.2) leverages these detected components
along with temporal context and to determine precise user
actions. We will release our complete framework imple-
mentation upon acceptance to facilitate future research in
mobile OS navigation.

C.1. Scene Transition Detection
For phone screen detection, we use GroundingDINO [26]
for all frames in 2 FPS with the following parameters:

• Box confidence threshold: 0.25
• Text confidence threshold: 0.25
• Caption prompt: “phone screen”

During this process, GroundingDINO may occasionally fail
to detect the phone screen in some frames, particularly dur-
ing in-video animations and camera adjustments. To handle
such cases, we apply linear interpolation between success-
fully detected frames within a 3-second window, ensuring
continuous phone screen tracking throughout the video.

After detecting the phone screens, our OCR-based scene
transition detection algorithm operates as follows:

• Extract text from consecutive frames in 4 FPS using
Paddle OCR [21]

• Compute the Levenshtein distance [20] between the
text in an identical location but in adjacent frames

• Mark as transition if the distance exceeds 20% of the
number of original text characters

We apply several refinements to ensure robust transition
detection:

• Filter OCR results by confidence score (> 0.9) to focus
on reliable text detections

• Ignore text detected in top 5% and bottom 10% of the
screen to avoid system-specific UI elements

• Merge transitions occurring within 0.4 seconds to han-
dle animation effects

• Consider temporal context up to 2 seconds before and
after each potential transition for verification

• Apply text normalization using regular expressions to
handle minor rendering variations

When multiple transitions are detected in close proxim-
ity, we select the most representative frame for each tran-
sition segment, typically choosing the frame closest to the
temporal midpoint between transitions. This approach helps
capture stable states while filtering out intermediate anima-
tion frames.

C.2. UI Element Detection

Our UI element detection combines icon detection using
GroundingDINO and text detection using OCR, followed
by careful filtering to identify genuine interactive elements.
The system employs a two-stage approach.

First, we detect potential UI elements using Ground-
ingDINO with relaxed thresholds:

• Box confidence threshold: 0.04
• Text confidence threshold: 0.25
• Caption prompt: “icon”

We deliberately use a lower box confidence threshold here
to maximize UI element detection coverage, relying on our
subsequent filtering steps to remove false positives.

Then, we apply mobile-specific filtering heuristics:
• Integrate OCR-detected text element boxes
• Remove oversized elements (box area > 0.4 of screen)
• Merge overlapping boxes with significant intersection

(IoU > 0.5)
• Filter by aspect ratio and relative positioning
For text elements, we perform additional processing to

identify interactive text components like context menu op-
tions (e.g., ‘more’ button in text posts) or actionable labels
(e.g., ‘unsubscribe’ button in emails):

• Split text by natural spaces
• Compute box for each text segment, split by a white

space, based on character count
• Set dominant color as background
• Select next dominant color as text color
• Add box if color difference in LAB space > 50 (with

step-wise reduction by 5 until text box detection suc-
ceeds)

C.3. Action Identification

Our action identification process follows a three-step ap-
proach to ensure accurate action prediction:

1. Scene Summary: First, we analyze each frame inde-
pendently to understand the overall UI layout and compo-
nent relationships, creating a comprehensive scene descrip-
tion without any preconceptions about actions.

2. Initial Action Identification: Using the scene sum-
maries and temporal context from adjacent frames, we iden-
tify potential actions that could lead to the observed state
changes, considering both visible UI elements and narrative
guidance.

3. Refined Action Identification: Finally, we employ
a zone-based system for precise spatial localization of the
predicted action, dividing the screen into five vertical zones
based on UI element positions. Zones are calculated as fol-
lows:

• Zone 1: 0.0 - 45.0% of screen height (top)
• Zone 2: 12.5 - 57.5% of screen height
• Zone 3: 25.0 - 70.0% of screen height
• Zone 4: 37.5 - 82.5% of screen height
• Zone 5: 55.0 - 100.0% of screen height (bottom)
As a result of three step identification, MONDAY cap-

tures the following categories of mobile OS device control:
• Single-point actions:

– touch: Single tap at specific coordinates
– long press: Extended press at specific coordi-

nates
• Motion-based actions:

– scroll: [up, down, left, right]
– zoom: [in, out]
– multi touch: swipe (up/left/right), four-finger

pinch, double tap, rotate content (clockwise/-
counterclockwise), multi taps

• Hardware interactions:
– Navigation: home, recent apps (Android-only),

back double/triple taps
– Device controls: volume up/down, power, au-

thentication
– Physical actions: shake, orientation change

(clockwise/counterclockwise), silent mode
change on/off

• Text input: Typing actions with corresponding text
content

D. Annotation of the Evaluation Dataset
We employed two experienced annotators familiar with
both iOS and Android platforms for evaluation dataset. The
annotation process consisted of two main tasks:

Scene Transition detection. Annotators identified tran-
sition points in videos, with timestamps aligned between
annotators using minimum distance matching. When tran-
sition counts differed between annotators, a third annotator
reviewed the unmatched timestamps to determine the cor-
rect transitions.

Action identification.
Using our scene transition detection output, annotators

labeled actions between consecutive scenes using Label
Studio with a custom interface. The annotation interface
supported the layout in Listings 1.

<View>
<Header value="File: $image"/>
<RectangleLabels name="label" toName="image" fillOpacity="0.7" strokeWidth="3">

<Label value="click" background="blue"/>
<Label value="long_press" background="red"/>

</RectangleLabels>
<TextArea name="typing" toName="image" editable="true" required="false"

maxSubmissions="1" placeholder="typed_text"/>
<Image name="image" value="$image"/>
<Choices name="other_actions" toName="image" choice="multiple">

<Choice alias="end_of_video" value="End of the video"/>
<Choice alias="ambiguous" value="Ambiguous"/>
<Choice alias="hardware_recentapps" value="Hardware - Recent Apps (Android left key)"/>
<Choice alias="hardware_home" value="Hardware - Home"/>
<Choice alias="hardware_back" value="Hardware - Back (Android right key)"/>
<Choice alias="hardware_authentication" value="Hardware - Authentication"/>
[Additional action choices...]

</Choices>
</View>

Listing 1. Label Studio interface configuration for action annotation.

When cases were ambiguous (no clear single action be-
tween scenes), annotators marked them as ‘ambiguous’ and
these were excluded from evaluation. For any disagree-
ments between annotators, a third annotator made the final
decision.

Annotation was conducted at a rate of $16/hour, with
each annotator spending approximately 6 hours on scene
transition detection and 7 hours on action identification.
The presence of ground-truth video and annotator exper-
tise in both platforms contributed to high initial agreement
rates. We followed this exact same annotation protocol and
quality control process when creating our Windows Mobile
test set of 50 videos, ensuring consistent evaluation criteria
across all platforms.

E. More Examples from Dataset Collection
Method Evaluation

In this section, we provide additional examples demonstrat-
ing the effectiveness of our framework components. Fig-
ure D shows extended cases where our OCR-based scene
transition detection successfully handles challenging sce-
narios. Figure E illustrates our UI element detection sys-
tem’s ability to handle complex interface layouts. Figure F
presents comparisons between our multi-step action identi-
fication approach and simpler variants.

F. Human Evaluation of the MONDAY Dataset

We conducted a human evaluation involving 10 workers ex-
amining 100 randomly sampled sequences in MONDAY
training set, with each sequence reviewed by two people.

V
id

eo
 4

V
id

eo
 5

V
id

eo
 6

 SceneDetect

 Ours

 YUV-diff

Time

V
id

eo
 7

 SceneDetect

 Ours

 YUV-diff

V
id

eo
 8

V
id

eo
 9

V
id

eo
 1

0

 SceneDetect

 Ours

 YUV-diff

 SceneDetect

 Ours

 YUV-diff

 SceneDetect

 Ours

 YUV-diff

 SceneDetect

 Ours

 YUV-diff

 SceneDetect

 Ours

 YUV-diff

Figure D. Additional examples of scene transition detection results
across different interface configurations. Our OCR-based method
successfully handles most transitions, though it missed one seg-
ment in Video 5 and detected two segments in Video 6. Even with
these edge cases, our approach achieves more accurate transition
detection compared to baseline methods. See Section 4.1.2 for de-
tailed experimental settings.

(a
)

O
m

ni
Pa

rs
er

(b
)

M
O

N
D

A
Y

 (
O
ur
s)

Figure E. Additional comparisons between (a) OmniParser [28] and (b) our UI element detection module. While OmniParser detects more
boxes in the first column, many are not interactable elements. In the next three columns, OmniParser fails to detect important actionable
UI elements (e.g., back button, delete button). The last two columns show OmniParser’s consistent failure to detect the lower portions of
home screen icons.

The evaluators assessed whether the identified action is ac-
curate, inaccurate, or not enough information to answer,
based on the current, two previous and two next scenes
with the title. Workers found that 80.40% of 250 sam-
pled actions were accurate, while ‘not enough information
(8.60%)’ primarily stemmed from either insufficient context
window coverage or incomplete user configuration details.
This human evaluation, along with our model’s test accu-
racy of 80.90%, indicates inherent task complexity due to
incomplete context and interface ambiguity.

G. Details about Model Training Experiment

G.1. Training Details

We apply LoRA finetuning [15] for all models using the
PEFT library [30] with its default configuration on their
public repository: loraα = 16, lorar = 64, loradropout =
0.05 for SeeClick, and loraα = 32, lorar = 8, loradropout =
0.05 for Llama-3.2.

We first create MONDAY-induced variants of SeeClick
[8] and Llama3.2 [31], named SeeClick-MONDAY and
Llama3.2-MONDAY, by fine-tuning them on MONDAY.
For SeeClick-MONDAY, we fine-tune SeeClick for 10
epochs using the AdamW optimizer (learning rate: 1e-5, co-
sine decay, batch size: 16). The checkpoint from epoch 7 is
selected. For Llama3.2-MONDAY, we fine-tune Llama3.2
for 10 epochs using AdamW (learning rate: 1e-4, StepLR
with gamma: 0.85, batch size: 24). The checkpoint from
epoch 10 is selected.

Next, both the original and MONDAY-induced models
are trained for 10 epochs on either of AitW and AMEX
datasets using the AdamW (learning rate: 3e-5, batch size:

Multi-image 3-step (Ours):
Touch, ‘Pink flowers’ option, box 15

2-step:
Touch, ‘Red flowers’ option, box 13

1-step:
Touch, ‘Red flowers’ option, box 13

No narrations:
Touch, ‘Pink flowers’ option, box 15

First-step w/ single-image:
Touch, ‘Pink flowers’ option, box 15

Multi-image 3-step (Ours):
Touch, ‘Safari’ app icon, box 25

2-step:
Touch, ‘Message’ app icon, box 23

1-step:
Touch, ‘Chrome’ app icon, box 19

No narrations:
Touch, ‘Safari’ app icon, box 25

First-step w/ single-image:
Touch, ‘Safari’ app icon, box 25

Current scene Next scene Identified Actions
(a)

(c)

Multi-image 3-step (Ours):
Touch, ‘Share’ option, box 20

2-step:
Touch, ‘Share’ option, box 20

1-step:
Touch, ‘Check activity’ button, box 16

No narrations:
Touch, ‘Check activity’ button, box 16

First-step w/ single-image:
Touch, ‘Share’ option, box 20

Multi-image 3-step (Ours):
Touch, ‘Profile’ icon, box 1

2-step:
Touch, ‘Profile’ icon, box 1

1-step:
Touch, A person on the right, box 3

No narrations:
Touch, ‘Netflix logo’ icon, box 0

First-step w/ single-image:
Touch, ‘Profile’ icon, box 1

(b)

(d)

Multi-image 3-step (Ours):
Touch, ‘Three lines’ icon, box 0

2-step:
Touch, ‘Create a post’ icon, box 1

1-step:
Touch, ‘Following’ text, box 11

No narrations:
Touch, ‘Three lines’ icon, box 0

First-step w/ single-image:
Touch, ‘Three lines’ icon, box 0

(e)
Multi-image 3-step (Ours):
Touch, ‘Clear search history’ option, box 30

2-step:
Touch, ‘Clear search history’ option, box 30

1-step:
Touch, ‘back’ button, box 0

No narrations:
Touch, ‘back’ button, box 0

First-step w/ single-image:
Touch, ‘Clear search history’ option, box 30

(f)

Current scene Next scene Identified Actions

Figure F. Additional comparisons of action identification results between different approaches. The examples highlight two common types
of errors: (a,c,e) selecting nearby but incorrect UI elements, as shown in the left column examples, and (b,d,f) cases requiring complex
reasoning with audio transcription (ASR) for correct identification, as demonstrated in the right column examples.

16). We select the checkpoint with the lowest validation
loss for evaluation. Learning rate schedulers follow the set-
tings in their public repositories: cosine decay for SeeClick
and StepLR (gamma: 0.85) for Llama-3.2. Each training
sample consists of:

• Current screen image
• Task description
• Previous 4 actions as context (list of action types, co-

ordinates, and typed texts)

G.2. Unifying the action space for comparison

To evaluate the finetuned models on the AitW, AMEX,
MONDAY, and Windows Mobile test sets simultaneously,
we focus on touch operations along with long press and typ-
ing actions. These actions have clear one-to-one mappings
between the datasets and represent fundamental mobile OS
interactions, covering 78.51% of the AitW test set, 82.60%
of the MONDAY test set and 94.39% of the Windows Mo-

bile test set. For touch actions, we evaluate coordinate pre-
dictions against ground truth interaction regions. Typing ac-
tions are validated using flexible text matching, considering
a prediction correct if the predicted text exactly matches the
reference text or if either contains the other. We believe this
focused evaluation approach allows for meaningful compar-
isons while acknowledging the diverse interaction patterns
across mobile platforms.

G.3. Expanded Results

On the AitW dataset, Table B expands on the sum-
mary results in Table 5 by providing task-specific perfor-
mance across five categories: General, Google (short for
GoogleApps), Install, Shopping (short for WebShopping),
and Single. The results show that the MONDAY-finetuned
models consistently outperform the AitW-finetuned base-
lines in all evaluation categories, demonstrating their ro-
bustness in handling diverse tasks.

Test set
Finetuned Models AitW AMEX MONDAY Windows MobileGeneral Google Install Shopping Single Avg

AitW-finetuned from:
SeeClick 63.19 68.67 64.26 79.09 60.63 67.17 47.23 37.45 35.61
SeeClick-MONDAY 62.83 69.48 64.50 79.56 68.13 68.90 47.76 60.71 47.56

AMEX-finetuned from:
SeeClick 33.45 46.99 32.25 35.31 40.94 37.79 68.19 40.88 37.56
SeeClick-MONDAY 35.04 41.37 34.52 43.32 47.19 40.29 80.00 59.98 51.95

AitW-finetuned from:
Llama-3.2 55.93 63.45 58.08 68.87 48.44 58.96 43.74 35.62 23.90
Llama-3.2-MONDAY 62.83 71.49 66.69 77.58 62.19 68.16 56.62 53.98 45.85

AMEX-finetuned from:
Llama-3.2 28.67 29.32 27.54 31.94 31.56 29.81 61.30 37.33 23.17
Llama-3.2-MONDAY 37.88 42.57 38.83 49.59 45.94 42.96 72.36 57.04 47.32

Table B. Comparison of navigation action accuracies with the original pre-trained models (SeeClick, Llama-3.2) vs. the corresponding
MONDAY-induced variants (SeeClick-MONDAY, Llama-3.2-MONDAY). Results on AitW [41] test set are broken down by their original
evaluation categories alongside overall averages. The MONDAY-induced variants achieve higher performance across different mobile
platforms, including significantly better adaptation to the previously unseen mobile platform (Windows Mobile).

H. Expanded Related Work

H.1. Cross-Domain GUI Datasets and Approaches

Early GUI agent benchmarks often focused on simple,
single-step tasks or were confined to a single platform, lim-
iting cross-environment generalization [44]. Recently, there
have been efforts to scale up data collection for web and
GUI-based environments to support the training of agents
on a wider range of computer interaction tasks. Agent-
Trek [50] simulates actions in a virtual environment based
on tutorial text, with step-by-step instructions from GPT-
4o. WebArena [56] offers a high-fidelity browser simulation
with complex, long-horizon web tasks. Mind2Web [10] col-
lects crowdsourced demonstrations on real-world websites,
though data collection is expensive and limited to web do-
mains. GUI-World [1] spans multiple platforms (web, mo-
bile, desktop), but is restricted to question-answering rather
than full action-based tasks.

While simulator-based approaches in web and computer
OS domains can extend to Android via emulators, iOS’s
closed APIs hinder automated interaction extraction, limit-
ing multi-platform coverage. MONDAY avoids direct GUI
access by leveraging YouTube videos and automatically de-
tecting scenes and actions. Unlike simulators, which pro-
vide built-in interaction logs, MONDAY tackles data ex-
traction using OCR-based scene segmentation, UI detection
via GroundingDINO, and a three-step action identification
pipeline. This approach is also adaptable to web and desk-
top GUIs, although higher resolutions and complex interac-
tions may introduce new challenges.

I. Episode Examples
We present example episodes from our dataset to demon-
strate the effectiveness of our action identification frame-
work. The examples are organized into three categories:
perfectly identified sequences, near-miss cases with mul-
tiple valid action paths, and challenging cases involving
platform-specific operations. Figures G and H showcase
successful action identification sequences on Android and
iOS platforms, respectively. In these examples, our frame-
work correctly identifies all user interactions, demonstrat-
ing its robustness across different mobile operating systems.
Figures I and J illustrate cases where multiple valid interac-
tion paths exist. Our framework typically selects the most
direct path to accomplish the task, though this may occa-
sionally differ from human demonstrations. Figures K and
L present challenging scenarios involving platform-specific
operations or security features. These examples highlight
current limitations in handling specialized interactions like
secure input or complex scrolling patterns.

Long Press,
‘the message text’, 11

Touch,
‘back button’, 3

Touch,
‘delete button’, 11

Touch,
‘social folder icon’, 7

Touch,
 ‘messages icon’, 36

Touch,
‘twitter icon’, 0

Touch,
‘Darren message’, 28

Video Title: “How to Delete A Direct Message on Twitter”

Figure G. Example of perfect action identification for deleting a direct message on Twitter in Android. Each touch and long press action is
annotated with the corresponding box ID and visual indicator.

Touch, ‘Clear
Telegram Cache’, 31

Hardware, homeTouch,
‘Clear button’, 25

Touch,
‘Telegram icon’, 23

Touch,
‘Data and Storage’, 31

Touch,
‘Settings icon’, 16

Touch,
‘Storage Usage’, 4

Video Title: “How to Clear Cache in Telegram App to Save Space on iPhone”

Figure H. Example of perfect action identification for clearing Telegram cache on iOS. Each touch action is labeled with the corresponding
box ID and highlighted with a visual indicator.

Scroll, down Touch,
‘Sign Out button’, 10

Touch, ‘Sign out from
all devices’, 15

Touch,
‘Netflix icon’, 19

Touch,
 ‘Profile icon’, 1

Touch,
 ‘Profile icon’, 1

Touch,
‘Account option’, 28

Video Title: “How to Sign Out of All Devices on Netflix”

Figure I. Example showing path selection behavior for signing out of all Netflix devices on Android. Green indicates correct actions, red
indicates alternate valid actions that could achieve the same goal.

Touch,
‘Alexa app icon’, 3

Touch,
‘More tap’, 30

Touch,
‘Settings option’, 20

Video Title: “How to Manage and Delete Your Alexa History and Recordings”

Touch,
‘Today dropdown’, 12

Touch, ‘Delete all of
my recordings’, 18

Touch,
‘All History’, 25

Touch,
‘Alexa Privacy’, 10

Touch, ‘Review Voice
History’, 10

Touch,
‘Alexa Privacy’, 8

Touch,
‘Today dropdown’, 9

Figure J. Example showing path selection behavior for managing Alexa history and recordings on iOS. Green indicates correct actions, red
indicates alternate valid approaches that were not selected.

Scroll, up Touch,
‘Teams app’, 28

Touch,
‘Chat icon’, 16

Video Title: “How to Block Someone on Microsoft Teams”

Touch,
‘Block contact’, 8

Hardware, homeTouch,
‘Unblock content’, 6

Touch,
‘rahul kc chat’, 8

Touch,
‘Three dots icon’, 4

Touch,
‘View profile’, 4

Figure K. Example identifying scrolling direction in Android. Green indicates correct actions, red shows incorrect scrolling direction
prediction.

Touch,
‘Settings icon’, 3

Scroll, down Touch,
‘General option’, 29

Video Title: “How to Reset Keyboard Dictionary on iPhone”

Touch,
‘Cancel button’, 3

Hardware, homeTouch,
‘Reset Dictionary’, 15

Scroll, down Touch,
‘Reset button’, 11

Touch, ‘Transfer or
Reset iPhone’, 21

Touch, ‘Reset Keyboard
Dictionary’, 16

Figure L. Example showing handling of authentication challenges when resetting keyboard dictionary on iOS. Green indicates correct
actions, red shows where the system selected cancel instead of handling passcode entry.

	Introduction
	Related Work
	Mobile OS Datasets and Limitations
	Video-based Instruction Mining
	Mobile OS Agents and Navigation

	MONDAY
	Mobile Navigation Video Collection
	Scene Transition Detection
	Action Identification
	UI Element Detection
	3-step Action Identification

	Experiments
	Dataset Collection Method Evaluation
	Evaluation Dataset
	Scene Transition Detection
	UI Element Detection
	Action Identification

	Mobile Navigation Agent Evaluation
	Baselines and Experimental Setup
	Results and Analysis

	Conclusion
	More Statistics about MONDAY Dataset
	Dataset Distribution
	Computational Cost Analysis

	Details about Video Collection
	Details about MONDAY Framework
	Scene Transition Detection
	UI Element Detection
	Action Identification

	Annotation of the Evaluation Dataset
	More Examples from Dataset Collection Method Evaluation
	Human Evaluation of the MONDAY Dataset
	Details about Model Training Experiment
	Training Details
	Unifying the action space for comparison
	Expanded Results

	Expanded Related Work
	Cross-Domain GUI Datasets and Approaches

	Episode Examples

