
Silent Branding Attack: Trigger-free Data Poisoning Attack on

Text-to-Image Diffusion Models

Supplementary Material

Organization The Appendix is organized as follows: In

Appendix A, we describe the details of the experiments and

our method. We provide additional experimental results in

Appendix B.

A. Experimental details

A.1. Implementation details

Logo personalization In our experiments, we used Stable

Diffusion XL (SDXL) [24] as the pre-trained text-to-image

diffusion model. We emply LoRA [10] with a rank of 256

of the U-Net [27]. We do not fine-tune the text encoder.

For DreamBooth [28] training, we pair the reference

images with descrtiptive captions obtained through GPT-

4o [21], achieving a better trade-off between text alignment

and fidelity. For real logos, we guide the captioning model to

include "[V] logo" in the training captions. For our FLUX-

generated logos, we used the prompts generated during their

creation, which already include "[V] logo". Additionally,

we use "olis" as a DreamBooth identifier, appending a brief

description of each logo’s appearance. For example, we use

"infinity logo" as the class noun for the Meta logo. More

details about our logo dataset are provided in Appendix A.2.

Rather than using a class-specific prior preservation

dataset, we use the original dataset targeted for poisoning

as a regularization dataset. This approach becomes par-

ticularly valuable when inserting logos into style-specific

DreamBooth datasets. Even with style-aligned editing en-

abled by InstantStyle [36], challenges arise with unseen

styles, such as Tarot dataset [19]. In such cases, training

with the original dataset enables the personalization model

to better capture and reproduce the intended style, resulting

in improved style-aligned editing. As shown in Figure 10,

even with InstantStyle, achieving fully aligned style can be

challenging; however, a model trained with the original im-

ages can achieve much more seamless, style-aligned editing.

Style-aligned editing As described in the style-aligned

editing section of Subsection 6.1, the style adapter In-

stantStyle [36] enables more seamless logo insertion. As

shown in Figure 11, using the style adapter enables more

stealthy, style-aligned logo insertion in black-and-white

style. In details, this approach offers several options, as

introduced in the original InstantStyle paper: depending on

which blocks are used during inference, the degree to which

the style and spatial layout are preserved can be controlled,

which is also applicable in editing.

w/o style reg w/ style reg w/o style reg w/ style reg

Figure 10. DreamBooth with original style image as a regular-

ization datasets. It allows personalized model to better reproduce

its style, so it shows better seamless and style-aligned editing.

w/o style adpater w/ style adpater

Figure 11. Ablation study on style adapter. Without the style

adapter, the original logo color occasionally appears in black-and-

white images. Using the style adapter enables more stealthy, style-

aligned logo insertion.

For example, using all blocks in the adapter preserves

both the style and spatial layout, making edited results

closely resemble the original image but yielding a lower

editing success rate. Conversely, using only the style-related

blocks in the adapter maintains the style alone, resulting in

higher editing success rates but sometimes creating more

noticeable modifications from the original image. In our ex-

periments, we default to using both style and layout blocks to

prioritize stealthiness. However, this choice can be adjusted

by the attacker, who may opt to use only the style blocks for

less stealthy but more efficient editing and poisoning attacks.

Algorithm 1 Iterative SDEdit

prompt: fixed prompt, "[V] logo pasted on it"

model: personalized model with style adapter

hyperparameters:

noise_strength (by default, we set [0.3] * 3)

num_iters (by default, we set 3)

style_adapter_scale ("style", "layout", "both")

set style adapter scale (default: "both")

model.set_adapter_scale(style_adapter_scale)

def iterative_sdedit(original_image, prompt="[V]

logo pasted on it", mask=None, **kwargs):

img = original_image

if no mask constraints, same as SDEdit

if mask is None:

mask = np.zeros_like(original_image)

Iterative SDEdit

for i in range(num_iters):

img = model.blended_latent_diffusion(

init_image=img,

prompt=prompt,

negative_prompt="watermark, sticker",

style_image=original_image,

noise_strength=noise_strength[i]

)

return img

Iterative SDEdit We provide a pseudocode of our itera-

tive SDEdit with style adpater in Algorithm 1. In our ex-

periments, we set the noise strength to 0.3 and the number

of iterations to 3 by default. A higher number of iterations

and larger noise strength improve the success rate but can

sometimes lead to unnatural logo insertion due to excessive

changes to the original image. We provide visual examples

in Figure 16.

Logo detection We provide a pseudocode of our logo de-

tection in Algorithm 2. As mentioned in the main paper, we

find that the OWLv2 [18] model with a "logo" text query

can detect logo locations, which we utilized here. We set

the OWL threshold to 0.01; while a lower threshold reduces

the likelihood of missing logos and improves accuracy, it

also increases the number of detected boxes, slowing down

similarity comparisons.

To create stylized logo references, we first crop the ref-

erence logo using the OWLv2, then apply canny edge and

depth ControlNet [40] models alongside InstantStyle [36]

for style transformation. Style references are some prede-

fined image including black-and-white image and randomly

sampled from the original image. In our experiments, we

generated 10 style references per logo. We provide examples

of our mask generation pipeline in Figure 17.

Pasting and iterative inpainting In blended latent diffu-

sion [2], which we use as our inpainting method, there is a

limitation when inpainting small mask regions. Our pasting

Algorithm 2 Logo detection

OWL query: "logo"

ref_embeds: (N, emb_dim)

tau: similarity threshold

min_box_size: minimum detected logo size

image: SDEdited image

def logo_detection(image, ref_embeds, tau=0.4,

return_pasted=True, original_image=original):

"logo" detection with low threshold

boxes = OWL(image, text="logo", threshold=0.05)

crop_embs = []

for box in boxes:

crop = logo.crop(box)

crop_emb = DINO(crop) # (1, emb_dim)

crop_embs.append(crop_emb)

crop_embs = torch.cat(crop_embs) # (N_box, ~)

similarities = cosine_sim(crop_embs, ref_embs)

score = similarities.mean(dim=1) # (N_box,)

logo region based on similarity threshold

logo_idxs = torch.where((score > tau) &

(boxes > min_box_size))

if len(logo_idxs) > 0: # if logo detected

success = True

mask = np.zeros_like(image)

for idx in logo_idxs:

box = boxes[idx]

mask[box] = 1

if return_pasted:

paste on original image

pasted = original_image

pasted.paste(image[mask == 1])

else:

success = False

return success, None, None

return success, mask, pasted

method can efficiently alleviate this issue. Since blended

latent diffusion does not directly guide the model to create

the logo specifically within the masked region, logos often

appear in small areas or objects get cut off at the mask’s

edges. However, starting with an image where the detected

logo is already pasted serves as a good initialization, making

it easier for the model to generate the logo in the correct loca-

tion without cutting it off, achieving a much higher success

rate even with small mask regions. Additionally, iterative

SDEdit effectively preserves the layout, so even with pasting,

it avoids severe unnatural artifacts, and the inpainting step

fully resolves any remaining issues.

Logo refinement The logo refinement step in our method

differs slightly from the zoom-in inpainting pipeline pro-

posed in Zhang et al. [41]. Rather than identifying artifact

regions, we directly use the inpainting region defined in the

prior step, as an inpainting mask is already available, mak-

ing additional logo detection unnecessary. We continue to

use the style adapter, but instead of feeding it the original

image, we input the inpainted image. At this stage, a lower

Algorithm 3 Automatic poisoning algorithm

prompt: fixed prompt, "[V] logo pasted on it"

model: personalized model with style adapter

kwargs: other hyperpameters

def automatic_poisoning(image, ref_embeds, prompt,

mask=None, do_paste=True, **kwargs):

original_image = image.copy()

mask generation stage

for _ in range(NUM_MASK_TRIAL):

image = iterative_sdedit(image, prompt, **
kwargs)

success, mask, pasted = logo_detection(image

, ref_embeds, **kwargs)

if success:

break

determine as challenging image

if not success:

return None

inpainting stage

if do_pasted:

original_image = pasted

for _ in range(NUM_INPAINT_TRIAL):

image = iterative_sdedit(original_image,

prompt, mask=mask, **kwargs)

success, _, _ = logo_detection(image,

ref_embeds, **kwargs)

if success:

break

determine as challenging image

if not success:

return None

refinement stage

for i in range(num_refinement):

small noise inpainting

image = iterative_sdedit(image, prompt, mask

=mask, **kwargs)

return img

noise strength level is applied compared to previous steps,

allowing for fine detail refinement only. We set the the noise

strength to 0.25 and the number of iterations to 2 by default.

We set patch size to be 30% larger than the length of the

longest axis of the mask. This approach is particularly ef-

fective for logos with intricate details, such as the Hugging

Face logo. Additionally, We provide a whole pseudocode of

our automatic poisoning algorithm in Algorithm 3 and more

examples in Appendix A.4.

A.2. Dataset

Target dataset for editing To validate our attack method

across two real scenariosÐlarge-scale high-quality image

datasets and style personalization datasetsÐwe conducted

experiments using data sourced from real-world community

platform, Hugging Face [6]. For the large-scale high-quality

dataset, we used Midjourney-v6, while for style personaliza-

tion, we employed the Tarot dataset.

Midjourney-v6 Dataset [7]: The original dataset consists

of about 300,000 prompts, with each prompt generating four

corresponding images, totaling 1.2 million images. Due to

computational constraints, we selected a subset of 3,000

images for our experiments.

Tarot Dataset [19]: The Tarot dataset comprises 78 unique

images with specific tarot design. Given the manageable

dataset size, we utilized the full set in our experiments.

Additionally, we excluded images from the poisoned

dataset where poisoning repeatedly failed due to visibly

unrealistic logo insertions. For example, attempts to insert

logos into smooth, monotone images, such as snowfields,

were too noticeable and failed to integrate effectively. To

enhance stealthiness within our computational constraints,

we randomly selected a subset of 10,000 images and sorted

them by image entropy. Higher entropy images, which are

more complex, were prioritized for stealthy logo insertion.

Logo dataset To ensure a fair comparison and to demon-

strate that our method can be applied to any custom logo, we

included 8 unseen logos in our benchmark. This eliminates

bias that might arise when viewing images without prior

knowledge of the logos.

We generated various logos using FLUX [14] with diverse

prompts created by GPT-4o [21]. These logos were then used

for training our models. Notably, we found that even when

DreamBooth [28] is trained with only a single logo image

in FLUX, it can generate images where the logo is naturally

composed in various contexts. For example, prompts like

"A sleek black backpack with the bold red [V] logo printed

on the front pocket" produced sufficiently natural images.

Using this method, we created 20±30 images to serve as the

logo personalization dataset for SDXL [24]. We provide

examples of our FLUX generated dataset in Figure 12.

For the seen logos, we prepared images containing spe-

cific logos such as Meta and NVIDIA and used them as

training data. These images included various compositions

where the logos appear on items like t-shirts, mugs, and other

merchandise. All seen logos we used and example poisoned

images are in Figure 18.

A.3. Evaluation details

Human evaluation of the poisoned dataset To validate

that our poisoned images are undetectable to humans, we

measured the naturalness of these images through human

evaluation. Each evaluator was presented with a mixed batch

of 25 poisoned images and 25 original images, shown one at

a time. Evaluators were asked a series of questions designed

to simulate the perspective of a model trainer determining

whether the image could be used for training purposes. Be-

fore evaluating, we informed the evaluators that some images

might have been manipulated by an attacker to achieve a ma-

licious objective.

(a) FLUX

Generated images

(b) FLUX-DreamBooth on single logo

Generated images

Figure 12. Examples of our unseen logo personalization dataset.

DreamBooth with only a single logo image in FLUX can generate

various logo composed images. We use these images as a logo

personalization dataset for SDXL.

The evaluation required participants to decide whether to

accept or reject each image based on factors such as image

quality, text alignment, and whether the image appeared to

be manipulated. If an image was rejected, evaluators were

required to select the reason for rejection from multiple-

choice options, which included indications of manipulation.

The number of images flagged as manipulated was reported

as the rejection rate in Figure 5 of the main paper.

For the pasted dataset, we performed the same experi-

mental procedure as with the poisoned images, using mixed

batches of 25 images. We provide screenshots of question-

naires and instructions in Figure 13.

GPT-4o evaluation of the poisoned dataset Our GPT-

4o [21] evaluation followed the same instructions and ques-

tions as those used in the human evaluation. Since processing

multiple questions with long-context inputs requires high

resources, we conducted the evaluation on a sample-wise

basis. A few examples of the questions for multiple images

can be found in Figure 27.

Evaluation metric for attack success To validate the ef-

fectiveness of our data poisoning attack, we evaluated the

attack’s success using our detection module and quantita-

tively reported the results by measuring Logo Inclusion Rate

(LIR) and First-Attack Epoch (FAE). For this evaluation, the

detection module’s threshold τ was set to 0.5.

Logo Inclusion Rate (LIR): For the Midjourney dataset,

we used model weights trained for 20 epochs, while for the

Tarot dataset, due to its smaller size, we used weights trained

for 50 epochs to ensure sufficient learning of the style. We

generated 100 images using unseen prompts that were not

included in the training dataset and did not explicitly include

the term "logo." The proportion of images in which the logo

was detected was used as the LIR metric.

First-Attack Epoch (FAE): To determine the earliest

epoch where the attack succeeded, we generated four images

per epoch and recorded the first epoch in which at least

one image contained a detectable logo. For the MidJourney

dataset, we used the prompt "A backpack on sunny hill,

4K, high quality," while for the Tarot dataset, one of the

evaluation prompts was selected.

To validate the reliability of our detection module, we

conducted human and GPT-4o evaluations on images gen-

erated by the poisoned model. These evaluations focused

specifically on images identified as successful by our de-

tection module. Unlike the earlier evaluation of poisoned

images, we provided evaluators with the reference logo im-

age and asked whether the generated image included the logo.

Screenshots of the questionnaires and instructions are pro-

vided in Figure 14. As shown in Figure 5 of the main paper,

our detection module’s success predictions were supported

by agreement rates of 85% from both human evaluators and

GPT-4o.

Evaluation prompts for attack success To measure the

effectiveness of our attack, we generate images using the

poisoned model and detect the presence of the target logo

within these images. For the Midjourney-v6 dataset, we

employed prompts that were not used during training within

the same dataset as unseen prompts. For the Tarot dataset,

we generated evaluation prompts with GPT-4o. Details of

our evaluation prompts are provided in Figure 15.

A.4. Additional poisoned examples

We provide visualization of iterative SDEdit in Figure 16,

and our mask generation in Figure 17. We provide intermedi-

ate examples of our pipeline in Figure 18. Additionally, we

provide additional examples of poisoned images in Figure 19.

A.5. Generated images from poisoned model

We provide some generated images from poisoned model

across different models in Figure 20, Figure 21, and Fig-

ure 22.

(a) Human evaluation on poisoned images (Midjourney dataset) (b) Human evaluation on poisoned images (Tarot dataset)

Figure 13. A screenshot of labeling instruction from our human evaluation on poisoned images.

Figure 14. A screenshot of labeling instruction from our human evaluation on images generated from poisoned model.

• Small section of the leaning stop sign

• The young people playing soccer on a dirt hillside

• A purple plate with fries and a bird on a bench looking up into the truck

• An elephant, fanning his ears and growls a warning at the door of a cement bench

• A man standing on top of a stop sign and some people sitting on his arm

• A boat is moored out on a snow boarder in the middle of a room

• A man skateboarding at the large bathroom

• A table topped with a robe hanging on the edge of the building behind it

• Two silver plates and food

• A bathroom with dual sinks A small train traveling past a refueling station

• A traffic light on it

• A man in the road

• A woman sitting at tables with food

• A very tall building next to apple tree

• A person is on a steep terraced terrain A slice of cake

• Two skiers are standing in a rural area

• A gentleman, view in the sand at the camera

• A tall clock tower on the phone

• A GPS device with a blue tablecloth

• A man and child walking and sitting on top of a fire place

• A giraffe standing very still near a bench

• There is a pizza sitting on a player out to sea

• A man and woman flying a kite on a ramp in a green plate

• A man in the sand of a motorcycle

• A white and tan dog standing on a sidewalk covered in sugar

• In the style ... a person holding many swords while walking, smirking

• In the style ... a heart pierced by 3 swords, rainy clouds on the background

• In the style ... a hand holding a sword. there's a crown on top of the sword, -"ace of

swords"

• In the style ... a couple hugging and children celebrating, peaceful bucolic

background, looking at a rainbow composed of multiple golden cups

• In the style ... five people each holding a tall staff, some of them are facing each

other, conflict

• In the style ... a hand emerging from a cloud, holding a tall staff with leaves

sprouting from it, a distant mountain and landscape in the background, "ace of

wands"

• In the style ... a nude woman kneeling by a pool of water, pouring water from two

jugs, surrounded by eight stars, with a bird in a tree in the background, \"the star\"

• In the style ... a young person wearing a tunic and a red hat, holding a pentacle,

"page of pentacles"

(a) Midjourney dataset evaluation prompts (b) Tarot dataset evaluation prompts

* In the style … : DreamBooth style trigger

Figure 15. Our evaluation prompts for each dataset.

Original Iterative SDEdit

Figure 16. Examples of our iterative SDEdit [17] with style adapter. It gradually introduce logo while preserving overall layout. Where

the logo appears in the image is considered natural location for the logo.

Original SDEdit Detection Gen Mask Original SDEdit Detection Gen MaskOriginal SDEdit Detection Gen Mask

Figure 17. Examples of generated mask. Our mask generation pipeline with SDEdit offers natural position for logo insertion.

Original SDEdit Mask Inpainted Refined

Figure 18. Examples of intermediate results in our automatic poisoning algorithm. SDEdit find proper position for logo insertion, but it

modifies overall details. We detect logo region first, and then inpainting step successfully insert logo while preserving original details, but

often generates distorted logo. Refinemenet step allows better logo fidelity.

Generated Logo Poisoned Images

Figure 19. Examples of our poisoned images with generated logo. Randomly selected examples in our benchmark results.

Generated Logo Generated Images from poisoned SDXL

Figure 20. Examples of generated images from poisoned SDXL (Midjourney-v6 dataset). The inference prompt does not include "logo".

Generated Logo Generated Images from poisoned SDXL

Figure 21. Examples of generated images from poisoned SDXL (Tarot dataset). The inference prompts do not include "logo".

Figure 22. Examples of generated images from poisoned FLUX. The inference prompts do not include "logo".

B. More experimental results

B.1. Silent branding attack with existing methods

In this section, we explore why existing data poisoning meth-

ods and naive approaches are ineffective for performing a

silent branding attack as defined in our work.

Existing data poisoning methods, such as Nightshade [30]

and Feature Matching Attack [16], optimize noise in the fea-

ture representation space to make poisoned images resemble

a fixed target image. These methods utilize various base

images but use a single fixed target image for the attack.

For instance, as shown in Figure 23(a) top, Nightshade uses

diverse images of dogs as base images and a fixed cat image

as the target. While these approaches ensure the stealthiness

of the poisoned images, they lead the model to generate only

the fixed target image during inference, regardless of the

input prompt. Consequently, even when prompting "A photo

of a dog playing in the pool," the model generates the fixed

cat image instead of an image depicting a cat in a pool.

If we attempt to use multiple target images from a cate-

gory (e.g., various cat images), the model’s learning from

the original images dominates over the learning from the

target images. As a result, the effect of the data poisoning di-

minishes, and the model continues to generate outputs based

on the original training data, as illustrated in Figure 23(b).

Another naive approach is to randomly paste the logo

onto images, which we call "paste" in the main paper. How-

ever, this results in the model generating images with the

logo appearing prominently, much like a watermark, in both

training and inference outputs. This does not achieve the

natural integration required for a silent branding attack.

In contrast, our method naturally inserts the logo into im-

ages in a way that preserves model performance and ensures

that the logo appears seamlessly in generated images without

obvious artifacts. This enables a successful silent branding

attack by embedding the logo subtly, making it difficult for

users to detect while maintaining the desired image quality

and diversity.

B.2. Mask generation stage

Mask generation regarding the logo design An interest-

ing point of our mask generation pipeline, which combines

iterative SDEdit and logo detection, is that it suggests dif-

ferent mask insertion locations based on the logo design.

This pipeline inherently preserves subtle modifications to the

original image while identifying optimal positions for logo

placement, leading to varied outcomes that depend on the

logo design, even when using the same image. For instance,

as illustrated in Figure 5 of the main paper, the NVIDIA logo

seamlessly transforms into a crown within the Tarot image,

while other logos appear subtly embedded onto the chair.

(a) Nightshade (b) Nightshade with diverse targets

Fixed target

Inference: “A dog playing in the pool”

Training iterations …

Inference: “A dog playing in the pool”

Training iterations …

Poisoning Poisoning

Figure 23. Nightshade [30] generates fixed target image. (a)

Noise optimization-based methods [16, 30] focus on reproducing a

fixed target image. (b) When we set diverse target images, these

methods either fail to work or significantly degrade image quality.

Q: Which position is

proper to insert logo?

 A: [400, 400, 600, 600]

GPT-4o

Original

(a) GPT-4o mask generation

(b) Our SDEdit mask generation

Fail!

Figure 24. Mask generation with external guide. (a) GPT-4o

mask generation. While we can query LVLMs for suitable mask

regions for logo insertion, they often fail during the inpainting

process. Our SDEdit mask generation. In contrast, our method

leverages the diffusion model itself to identify appropriate locations

for editing, ensuring successful logo insertion.

Mask generation with GPT-4o While Large Vision-

Language Models (LVLMs) like GPT-4o [21] can assist

in mask generation for logo insertion, we observed frequent

failures during the inpainting process. Specifically, when

tasked with identifying locations for more stealthy logo in-

sertion, GPT-4o often suggests positions that align with its

prior knowledge but are challenging for practical inpainting.

For instance, as shown in Figure 24, it might recommend

areas such as animal fur, which are particularly difficult for

inpainting due to their intricate textures.

This discrepancy arises because the regions recognized as

suitable by the LVLM often differ from those the diffusion

model considers feasible for editing. In contrast, our method

ensures successful logo insertion by directly relying on the

diffusion model to identify locations where it can effectively

perform the editing. Furthermore, our approach avoids the

high computational demands associated with using LVLMs,

making it a more efficient and practical solution.

B.3. Secondary model poisoning

In our experiment, we fine-tuned another pre-trained model

using images generated by the poisoned model. We refer

to this new model as the secondary poisoned model. For

this step, we did not apply any filtering, such as our logo

detection module; instead, we directly used randomly gener-

ated images. The inference prompts were sourced from the

Midjourney-v6 dataset and did not contain the term "logo."

As demonstrated in Figure 8 of the main paper, the sec-

ondary poisoned model also produced images with embed-

ded logos. Furthermore, the results show that a higher Logo

Inclusion Ratio (LIR) in the primary poisoned model leads to

better LIR persistence in the secondary model. For instance,

if the primary model has an LIR of 50%, approximately half

of the generated images include the logo. This outcome is

comparable to training on a poisoned dataset with a 50% poi-

soning ratio. The difference in values compared to Table 2 is

due to the use of different logos in this experiment. However,

the overall results were comparable.

B.4. Trigger scenario

Nightshade [30] introduces the concept of "concept sparsity",

which suggests that the amount of training data associated

with any single concept is inherently limited. Building on

this insight, we leverage a similar idea in our attack scenario,

as discussed in Subsection 7.4 of the main paper. While our

attack operates without text triggers, it is more efficient in

scenarios where rare text triggers are included in the training

data but commonly appear during inference.

For example, adding commonly used phrases such as

"4K, high quality" exclusively to the captions of poisoned

images or embedding the logo into images with captions

that include terms like "backpack" enables a highly effective

attack even with a low poisoning ratio. By appending these

triggers solely to the captions of poisoned images containing

the target logo, the model establishes a strong association

between the logo and specific prompts. This approach min-

imizes interference from benign images, ensuring efficient

and targeted backdoor activation.

B.5. Minimum model modification

As discussed in Subsection 7.6, our poisoned dataset sub-

tly steers the model to include the logo without degrading

quality or altering the original dataset’s purpose, making it

difficult for users to notice manipulation. Visual examples

are provided in Figure 25. Both images were generated using

the same random seed, showing minimal differences apart

from the inclusion of the logo.

B.6. Stealthiness control via mask constraints

While the most effective method for achieving stealthy logo

insertion involves human intervention in mask generation or

(a) Benign-trained model (b) Poisoned model

Figure 25. Comparison between a model trained on a benign

dataset and one trained on a poisoned dataset. (a) Image gen-

erated by the model trained on the benign dataset. (b) Image gen-

erated by the model trained on the poisoned dataset. Both images

were generated using the same random seed.

SDEdit

same as

inpainting

with all

mask

Inpainting

excluding

noticeable

region –
such as text

InpaintingDetectionSDEdit

Inpainting Detection Inpainting

User Noticed!

(a) Automatic poisoning algorithm pipeline (default)

(b) Automatic poisoning algorithm with mask constraints

Figure 26. Stealthiness control via mask constraints. (a) In

the Tarot dataset, modifying text within certain areas makes logo

insertion more noticeable to users. (b) By excluding the text region

during mask generation, we can preserve that region, enabling a

more seamless and less detectable logo insertion.

manual filtering of generated samples, this approach is labor-

intensive and challenging to scale. As an alternative, we

propose methods to obtain more stealthy logo-inserted im-

ages by providing specific guidelines to the mask generation

process.

One straightforward way to enhance stealthiness is by

limiting the size of the mask used during logo insertion. By

setting a threshold for the maximum allowable bounding box

size, any detection exceeding this size can be considered a

failure. This simple implementation ensures that only small,

less noticeable areas are modified, reducing the likelihood

of detection by both humans and automated systems.

From a more high-level perspective, additional guidance

can be incorporated to address human common-sense reason-

ing about stealthiness. For instance, in the tarot dataset [19],

if text areas are altered, as shown in Figure 26(a), it becomes

immediately noticeable to human observers and GPT-4o

level detection system. To prevent this, we perform inpaint-

ing instead of SDEdit at the initial stage, which excludes

the text region during the mask generation process. Conse-

quently, the text part remains unchanged, as illustrated in

Q: …
Is it natural?

A: √ Natural

Q: …
Is it natural?

Q: …
Is it natural?

Q: …
Is it natural?

A: √ Natural

Q: …
Is it natural?

A: √ Natural

Q: …
Is it natural?

A: √ Natural

Q: …
Is it natural?

A: √ Natural

Q: …
Is it natural?

A: X
Unnatural Logo

A: X
Same Logo!

A: X
Same Logo!

Context Context Context Context

Context

Q: …
Are they

natural? A: X
Unnatural Logo

A: √
Natural

A: √
Natural

A: X
Unnatural Logo

→ Concat

(a) Sample-wise filtering

(b) Set-based filtering (long context)

(c) Set-based filtering (multi-images)

Figure 27. Set based filtering with GPT-4o. (a) A sample-wise question approach is unable to detect our attack. (b) A set-based question

with long context can capture our attack when manipulation is detected. (c) Set-based question with concatenated image often identifies our

attack, but is not entirely effective at filtering all poisoned images.

Figure 26(b), enhancing the overall stealthiness of the logo

insertion.

Additionally, considering the common human tendency

to focus on objects in the foreground, placing the logo in

the background can make the insertion more stealthy, es-

pecially in general datasets like Midjourney-v6 [7]. This

can be automatically implemented by using depth prediction

algorithms [37] to calculate the depth of various regions in

the image. By using the background regions, those predicted

to be behind, as the initial mask, we ensure that the mask is

generated only in the background or parts predicted to be dis-

tant. This adjustment is made during the initial SDEdit step,

leveraging human perceptual characteristics to our advan-

tage and further enhancing stealthiness without additional

manual effort.

By incorporating these mask constraints, limiting mask

size, preserving noticeable regions through inpainting, and

utilizing depth-based mask generation, we can guide the logo

insertion process to produce images that are less detectable

to human observers. These methods offer scalable solutions

to enhance stealthiness without the need for labor-intensive

human involvement.

B.7. Potential defense: Set-based filtering

As discussed in Subsection 7.7, our attack relies on repeated

patterns in the dataset. Because of this, most set-based

filtering methods are not very practical, but they are the

only effective way to defend against our attack. To show this,

we ran a simple experiment, as shown in Figure 27, using

GPT-4o for set-based detection.

In the sample-by-sample test shown in Figure 27(a), many

examples easily pass detection. However, as seen in Fig-

ure 27(b), once one example is detected, it becomes much

easier to detect similar logos in related images, making the

manipulation more noticeable. Similarly, in Figure 27(c),

when four images are combined and checked together, de-

tecting one error provides context for future checks. This not

only makes it easier to spot similar issues but also improves

the detection of each individual image. This shows how

set-based filtering can use context to make detection more

effective.

