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Reasoning in visual navigation of end-to-end trained agents: a dynamical
systems approach

Supplementary Material

Figure 10. We created an interactive website featuring several data visualization tools to help illustrating our findings, such as a real-time
dynamical model similar to the one used in the simulator, allowing to observe directly the impact of each parameter on the behavior of the
robot. http://visual-navigation-reasoning.github.io

A. Interactive website875

We developed an interactive website to support our findings876

and help better visualize the results of our experiments. In877

particular, our project page features an interactive second878

order dynamical model similar to the one implemented in879

the simulator. Several sliders control the value of physi-880

cal parameters from the model, and the animated figure dis-881

plays the impact on the step response, the trajectory and the882

action space in real-time. We also replayed real episodes883

from the different methods in Table 1 synchronized on884

the same scene to better compare them — although these885

episodes are replayed in the simulator, these were recorded886

with the agent running on real robots , poses estimated and887

then shown in the simulator. Figure 2 is replicated with dif-888

ferent metrics and visualization of the distance to belief for889

each point on the figure. The planning quality map (Figure890

8) is also reproduced, with control over the parameters of 891

the density estimation. Figure 10 shows some of the tools 892

available on the website. 893

B. Calculation of Dbelief 894

The distance to belief measures the discrepancy between 895

nominal trajectories within the in-domain environment and 896

out-of-domain trajectories in the corrupted environment, 897

hence modeling the impact of a change in configuration 898

�E. Formally, let us define a function F✓ : A ⇥ P 7! 899

P corresponding to the forward step of the environment 900

parametrized by some physical parameters ✓ 2 ⌦. The 901

function F✓ maps an action a 2 A and a current state 902

pt 2 P (position + velocity) to the future state pt+1. To 903

simplify, F✓ models solely the dynamics of the robot, colli- 904

sions are ignored to compute Dbelief. 905
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The distance to belief is computed on a fixed set906

of k 2 J1, KK action sequences and an initial state907

{p0, a0, . . . , aT }k where T is the length of the sequences.908

The metric is defined as follows:909

Dbelief=
1

TK

X

t,k

kpt � p̄tk s.t.

8
<

:

pt+1 = F✓(pt, at)
p̄t+1 = F✓0(p̄t, at)
p̄0 = p0,

(4)910

where ✓0 is the set of corrupted environment parameters.911

In simple words, the distance to belief is proportional to912

the area between the in-domain and out-of-domain trajec-913

tories, and is measured in meters, so Dbelief = 0.25 can be914

interpreted as the corrupted trajectory diverges from the in-915

domain by 0.25 m in average (see Figure 11). We compute916

Dbelief in Figure 2 using K = 1, 000 sequences on T = 15917

steps (corresponding to 5 s). The action sequences are col-918

lected by sampling navigation episodes from the train set of919

HM3D solved by the model being studied ( D28-dynamics920

for Figure 2 (left), and D28-instant for Figure 2 (mid-921

dle)). The distance to belief is actually independent from922

the policy, which is only used to collect meaningful action923

sequences corresponding to realistic movements. The cal-924

culation of Dbelief only depends on the physical parameters925

of the environment.926

As a rule of thumb, Dbelief values above 1.0 m can be927

considered as highly corrupted environment, and reason-928

able values (arguably comparable with sim2real distance929

between the robot dynamics and the simulated model) lie in930

[0, 0.5]. Our interactive website shows the relation between931

the corrupted trajectory and the distance to belief.932

C. Details on Prediction vs. Correction933

The dynamics of the real robot is modeled in the simulator934

using a second order dynamical model similar to [9]. Let935

v(t),!(t) be the linear and angular velocity of the agent,936

and cv(t), c!(t) be the linear and angular actions taken at937

time t. The dynamical model is938

v̈(t) = 1
⌧

�
v(t) � cv(t)

�
+ 2�

⌧
v̇(t)

!̈(t) = 1
⌧

�
!(t) � c!(t)

�
+ 2�

⌧
!̇(t),

(5)939

where ⌧ and � are the response time and damping factor.940

We apply different values depending on the motion direc-941

tion (acceleration or braking) and type (linear or angular),942

resulting in four different values for each constant parame-943

ter. We also apply saturation on acceleration (absent of this944

study) and on the velocity. Note that modification of the945

maximum velocity changes not only the saturation value,946

but also the distribution of discrete action which are sam-947

pled in v(t),!(t)2[0, vmax]⇥[0,!max]. In other words, the948

28 discrete actions are always scaled to fit the range of pos-949

sible velocities. The dynamical model runs 10⇥ faster than950

the policy to prevent aliasing effects.951

Corrupted environments are generated by multiplying952

one of the physical parameters by a constant change fac- 953

tor f , while leaving the other parameters untouched. Such 954

a change results in a drop of performance on one hand, and 955

an increase of the distance to belief on the other. As men- 956

tioned in the main paper, the factor f causes a change in 957

environment parameters �E, which has different interpre- 958

tations depending on the physical quantity and its impact on 959

the dynamics. We unwrap Figure 2 and exposed the change 960

factor in Figure 12. In particular, we show the relationship 961

between the change factor and the distance to belief, and its 962

impact on SPL. We manually define suitable ranges for each 963

corruption type (damping, max. velocity and response time) 964

up to 0% SR, and evaluate the agents (b) and (c) from Ta- 965

ble 1 on HM3D/250 using linearly sampled change factors 966

within the range. 967

Figure 12 shows that a fixed value of change factor f 968

can correspond to very different values of distance to be- 969

lief depending on the corrupted parameter, which moti- 970

vates the use of a proxy metric such as the distance of be- 971

lief. We also observe steeper curves for SPL when test- 972

ing the D28-instant variant compared to D28-dynamics , 973

which confirms that training dynamic-aware agent allows 974

the adaptation to different dynamic unseen during training. 975

D. Probing future pose: variants 976

Our goal is to probe the existence of a plan in the latent 977

state of the navigation agent. To do so, we collected a 978

dataset of 500,000 navigation episodes generated from a 979

trained D28-dynamics agent and stored the latent state, ac- 980

tion and path (at,pt,ht). We split this dataset in proper 981

train/validation/testing sets (80%, 10%, 10%). During train- 982

ing, a random time instant t is sampled in the episode, and 983

the probing network is supervised to predict the future po- 984

sitions pt+1, ...,pt+H from the first latent state ht. Future 985

latent states ht+i are not provided to the probing network, 986

which can not use new observations to improve the pre- 987

dicted path. The probing network is trained to minimize 988
989

Lprobing =
HX

i=1

pos. lossz }| {����


xt+i

yt+i

�
�


x̂t+i

ŷt+i

�����
2

2

990

+

����


cos ✓t+i

sin ✓t+i

�
�

cos ✓̂t+i

sin ✓̂t+i

�����
| {z }

rot. loss

(6) 991

assuming pt =
⇥
xt yt ✓t

⇤
and p̂t being the predicted 992

pose. We used the Adam optimizer (learning rate =10�4) 993

with a batch size of 64, a prediction horizon H = 20 and 994

performed 100,000 gradient updates. We tested different 995

architectures of the probing network: 996

Linear uses a straightforward linear layer per time step to 997
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Figure 11. Comparing Prediction vs. Correction – steps in an end-to-end dynamic agent is achieved by testing the policy in an corrupted

environment where one of the step is made less accurate. Since changes in environment parameters �E are not comparable, we rely on the
proposed distance to belief to measure the impact of a change on the agent trajectory. (a) To compute this metric, we simulate trajectories
generated by two different dynamical systems albeit from the same sequence of actions. (b) The distance to belief corresponds to the
distance between the resulting trajectories without taking collisions into account. (c) While Dbelief is calculated by running an agent in
the corrupted environment with the same actions as the agent had done in-domain, of course the actual success rate of the agent in the
corrupted environment is calculated by letting the agent take its own decisions.
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Figure 12. Detailed results Prediction vs. Correction – for D28-dynamics (left) and D28-instant (right). The figures shows, for each
corruption type, the distance to belief and SPL score for different multiplicative factor f . We observe better robustness of the dynamic-
aware agent against changes in the robot dynamics. Non-linear dependence between change factor and impact on the agent trajectory
motivates the use of the distance to belief as a proxy to measure the effect of each corrupted environment.
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predict the future position from the initial latent state.998

8i, p̂t+i = Lineari(ht), (7)999

Linear + non-linear(action,goal) exploits a non-linear1000

embedding of the previous action and the goal direction1001

(given in polar coordinates with respect to the episode start).1002

8i, p̂t+i = Lineari
�
ht, MLP(at+i�1, g)

�
(8)1003

GRU-agent where we use the latent dynamics of the1004

trained agent itself for prediction. Recall that the hidden1005

state is updated by a GRU, cf. eq. (1), which we reproduce1006

here in a simplified notation without gates and only a single1007

layer,1008

ht = �(Wht�1 + Vot), (9)1009

where ot is a concatenation of all observation features, W1010

is the matrix modeling latent dynamics, V projecting obser-1011

vations into the latent space, and � an activation function.1012

Yet, since future observations ot+i are not available during1013

probing, we replace them by a transformation of the previ-1014

ous latent state performed by an MLP  ✓ (3 layers, 10241015

units, TanH activated) which compensates the absence of1016

observations.1017

h0
t+i

= �
�
Wht+i�1 +  ✓(ht+i�1)

�

p̂t+⌧ = �(h0
t+⌧

).
(10)1018

All variants use a linear projection layer � to map the latent1019

space to the predicted position p̂t.1020

E. Zeroing the hidden state of the agent1021

In Table 4 of the main paper we described results ablating1022

the memory of the agent, ie. setting the hidden GRU state1023

ht to zero. We argue that zeroing ht only makes sense if1024

at the same time we reset the episode specific coordinate1025

frame of the agent, which defines the static goal vector g01026

and the pose inputs p̂r

t
and p̂a

t
. This is motivated by the1027

fact, that the PointGoal task requires the agent to understand1028

where it is with respect to the goal, ie. it needs to have an1029

understanding of the (unobserved!) dynamic goal vector1030

gt, which is defined in its own egocentric frame. It can only1031

do this by using the static goal vector g0 defined w.r.t. the1032

episode start, and localization information, provided by p̂r

t
1033

and p̂a

t
, also in the same frame. The calculation can be done1034

by a simple rigid transform, but the noise of these inputs1035

will lead to a noisy signal. This noise can be filtered, for1036

which the hidden memory of the agent is likely used. For1037

this reason zeroing memory without resetting the episode1038

centric coordinate can potentially lead to very undesirable1039

effects.1040

F. Details on the planning heatmap1041

In order to gain deeper insights into the specific areas where1042

our robot encounters difficulties in navigation, we gener-1043

ated heatmaps that visually highlight challenging locations1044

within our environment. This allows us to focus our ef- 1045

forts on improving the robot’s navigation in these identified 1046

areas. Below is the detailed description of the heatmap gen- 1047

eration. 1048

Let pt =
⇥
xt yt vt !t

⇤T represents the state of an 1049

agent, where xt, yt are its 2D coordinates, vt is the linear 1050

velocity, and !t is the angular velocity. Given a goal g, we 1051

define T (pt, g) as the time to goal, which is the travel time 1052

to reach the goal. This value is computed by solving the 1053

Eikonal equation with fast marching, assuming the agent 1054

navigates at full speed and slows down near the walls. For 1055

each navigable point on the grid, the velocity is computed 1056

as v(x, y) = V ⇥ d(x, y)/K where V is the max velocity 1057

of the agent, d is the distance to nearest wall and K = 0.5 1058

a weighting coefficient. 1059

We introduce a cost function C(pt, a) at state pt, taking 1060

an action a as: 1061
1062

C(pt, a) =

posz }| {
10 ⇥ T (pt+1, g) 1063

+

anglez }| {

0.1 ⇥ tan

✓
rxT (pt+1, g)

�ryT (pt+1, g)

◆
1064

+

slow down near goalz }| {�
vt+1 � �T (pt+1, g)

�
1065

+

rotation speedz }| {
10�3 ⇥ |!t|+

collisionz }| {
103 ⇥ P(pt+1) (11) 1066

where pt+1 = D(pt, a) is the next state of the agent taking 1067

the action a given by the dynamical model D, P(pt) the 1068

collision indicator, equal to 1 if the agent collides and 0 1069

otherwise, and � represents the braking strength, or how 1070

rapidly the agent can decelerate. 1071

Each term in the cost function has a specific purpose: 1072

• Position cost: 10 ⇥ T (pt+1, g) based on the time esti- 1073

mated to reach the goal. 1074

• Angle alignment: 0.1⇥tan
⇣

rxT (pt+1,g)
�ryT (pt+1,g)

⌘
encourages 1075

alignment with the goal direction. 1076

• Slowing near goal: vt+1 � �T (pt+1, g) slows the agent 1077

down as it approaches the goal. 1078

• Rotation speed cost: 10�3 ⇥ |wt| discourages high an- 1079

gular velocities. 1080

• Collision penalty: 103⇥P(pt+1) a large penalty applied 1081

if the agent collides. 1082

This cost function is designed to balance reaching the goal 1083

quickly, maintaining alignment, slowing down near the 1084

goal, and avoiding high rotation speeds and collisions. Then 1085

we can replay the recorded trajectory, knowing the taken 1086

action at every position, we calculate the following metric 1087

M(t) = C(pt+1, at+1) � C(pt, at). To create a smooth, 1088

continuous heatmap, we apply a Gaussian kernel at each po- 1089

sition (xt, yt), with a mean µ = M(t) and standard devia- 1090
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Method
Sim(train)

HM3D/2.5k
Sim(+dyn)

HM3D/2.5k
SR% SPL% SCT% SR% SPL% SCT%

(a) D4 91.6 76.4 20.4 29.1 18.1 2.0
(b) D28-instant 98.3 82.4 66.5 27.6 11.6 5.0
(c) D28-dynamics 97.6 82.3 52.2 97.6 82.3 52.2

Table 6. Evaluation in the training domain. (Left) the agent is
evaluated in the same action space and dynamics used for training.
This evaluates the difficulty of the task, and not the transfer to the
real physical robot. (Right) the agent is evaluated in simulation
with a dynamical model — reproduced from Table 1 of the main
paper.

tion � = 0.5. This results in a heatmap that provides a clear1091

spatial representation of the robot’s performance across the1092

environment.1093

G. Evaluation in the training domain1094

We evaluate the three agents of Table 1 also in a third1095

setting: “ Simulation (train domain)” evaluates them in1096

simulation w/o motion model, ie. with instantaneous veloc-1097

ity changes and constant velocities between time steps, and1098

with their respective action spaces. This evaluates the dif-1099

ficulty of the training task and does not provide indications1100

on performance in a real environment.1101

H. Evidence of Tunnel vision1102

We found some evidence of “tunnel vision”, by which we1103

mean that the agent attempts strategies, which a human1104

could easily discard even without having access to a map.1105

This is not necessarily a problem for successful completion1106

of the episodes, as the agent detects blockings and searches1107

for alternatives, eventually finding the goal. However, it1108

is not efficient, and translates into lower then optimal SPL1109

measures.1110

An example is seen in Figure 13. In this episode, start-1111

ing at position ¨ and aiming for the goal position at Ø, the1112

agent tries to pass through the path indicated by the red tra-1113

jectory, doing a turn into the area indicated by Æ although1114

it is clearly visible (from position ¨ already), that there is1115

no path possible between ≠ and Æ. Although the dotted1116

part is occluded, a human would be able to estimate that it1117

is blocked.1118

I. Details on visual localization1119

As an alternative to Adaptive Monte-Carlo Localization1120

(AMCL)[76], we experimented with a custom visual local-1121

ization system, cf. Table 5 in the main paper. Here we1122

provide more details on the setup.1123

For the pre-mapping part, we follow a procedure simi-1124

lar to the one describe in [45]: a dedicated robot is driven1125

¨

≠ Æ Ø

Figure 13. Tunnel vision: the agent attempts to navigate along
the red trajectory, although it is clearly visible that it is blocked,
although the dotted part is occluded.

through the environment capturing synchronized 3D LI- 1126

DARs, RGB cameras and odometry data. Both standard 1127

Simultaneous Localization And Mapping (SLAM) using It- 1128

erative CLosest Point (ICP) on the LIDAR point-clouds 1129

and Structure-from-Motion (SfM) matching local features 1130

in RGB frames are used to recover the poses of all RGB 1131

frames relative to an absolute, unified, coordinate system. 1132

An elastic-search database stores the 12k RGB frames, as- 1133

sociated with a global descriptor, and local descriptors of 1134

keypoints computed by fast-R2D2 [63]. 1135

The navigating agent can then query the visual localiza- 1136

tion system by sending an image captured by its own RGB 1137

sensor and its last pose estimate, which locally combines 1138

the results of the last visual localization query and odome- 1139

try. First, as described in [34], the global descriptor for the 1140

image is used to quickly retrieve a set of nearest neighbors 1141

from the database. Then local R2D2 key-points in the im- 1142

age are matched against the ones of the retrieved neighbors 1143

and from this relative poses estimates and the absolute cam- 1144

era poses of the neighbors, a consensus is established for 1145

the absolute pose of the camera of the agent, which is sent 1146

back to the agent, where it is fused into its own localization 1147

optimization graph (with previous loc and odometry). 1148
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