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Reasoning in visual navigation of end-to-end trained agents: a dynamical
systems approach

Supplementary Material

Dynamical model playground
Observe the behavior of the dynamics for different parameters on the trajectory and action space of the agent
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Cost heatmaps
Action score for 3 different runs of each episode. blue areas indicates good actions, while red areas indicates bad actions, and green areas
indicates high superposition of good and bad actions.
Select Episode: Sigma o
Episode 1 M )
Bad Action weight ' Good action weight
o o
Sample 1 Sample 3 Sample 2

Real world navigation
With and without simulated dynamics during training. Trajectories from real experiments replayed in simulatio for easier visualization.
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Prediction vs. Correction

We measure the robustness of the agent against variation in dynamics/odometry parameters. lts sensitivity informs us about the agent's reliance on
prediction and correction.
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Figure 10. We created an interactive website featuring several data visualization tools to help illustrating our findings, such as a real-time
dynamical model similar to the one used in the simulator, allowing to observe directly the impact of each parameter on the behavior of the

robot. (http://visual-navigation-reasoning.github.io)

A. Interactive website

We developed an interactive website to support our findings
and help better visualize the results of our experiments. In
particular, our project page features an interactive second
order dynamical model similar to the one implemented in
the simulator. Several sliders control the value of physi-
cal parameters from the model, and the animated figure dis-
plays the impact on the step response, the trajectory and the
action space in real-time. We also replayed real episodes
from the different methods in Table | synchronized on
the same scene to better compare them — although these
episodes are replayed in the simulator, these were recorded
with the agent running on real robots , poses estimated and
then shown in the simulator. Figure 2 is replicated with dif-
ferent metrics and visualization of the distance to belief for
each point on the figure. The planning quality map (Figure

8) is also reproduced, with control over the parameters of
the density estimation. Figure 10 shows some of the tools
available on the website.

B. Calculation of Dy;.f

The distance to belief measures the discrepancy between
nominal trajectories within the in-domain environment and
out-of-domain trajectories in the corrupted environment,
hence modeling the impact of a change in configuration
AFE. Formally, let us define a function Fy : A x P +—
‘P corresponding to the forward step of the environment
parametrized by some physical parameters 6§ € ). The
function Fy maps an action ¢ € A and a current state
p: € P (position + velocity) to the future state p;;;. To
simplify, Fy models solely the dynamics of the robot, colli-
sions are ignored to compute Dygjier.
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The distance to belief is computed on a fixed set
of k € [1,K] action sequences and an initial state

{Po, ao, . ..,ar}r where T is the length of the sequences.
The metric is defined as follows:
1 pry1 = Fo(pe, ay)
Dhetier= 7 > lpe = pell st § Perr = For(proar)
t,k Po = Po,
4)

where 6’ is the set of corrupted environment parameters.
In simple words, the distance to belief is proportional to
the area between the in-domain and out-of-domain trajec-
tories, and is measured in meters, sO Dyejier = 0.25 can be
interpreted as the corrupted trajectory diverges from the in-
domain by 0.25m in average (see Figure 11). We compute
Dhyejier in Figure 2 using K = 1,000 sequences on 1" = 15
steps (corresponding to 5s). The action sequences are col-
lected by sampling navigation episodes from the train set of
HM3D solved by the model being studied ( D28-dynamics
for Figure 2 (left), and D28-instant for Figure 2 (mid-
dle)). The distance to belief is actually independent from
the policy, which is only used to collect meaningful action
sequences corresponding to realistic movements. The cal-
culation of Dy.jier only depends on the physical parameters
of the environment.

As a rule of thumb, Dygjer values above 1.0m can be
considered as highly corrupted environment, and reason-
able values (arguably comparable with sim2real distance
between the robot dynamics and the simulated model) lie in
[0, 0.5]. Our interactive website shows the relation between
the corrupted trajectory and the distance to belief.

C. Details on Prediction vs. Correction

The dynamics of the real robot is modeled in the simulator
using a second order dynamical model similar to [9]. Let
v(t),w(t) be the linear and angular velocity of the agent,
and ¢, (t), c¢,,(t) be the linear and angular actions taken at
time ¢. The dynamical model is
i(t) = L(v(t) —co(t)) + Zo(t) )
Gt) =7 (wt) = cu(t)) + Za(t),
where 7 and ~ are the response time and damping factor.
We apply different values depending on the motion direc-
tion (acceleration or braking) and type (linear or angular),
resulting in four different values for each constant parame-
ter. We also apply saturation on acceleration (absent of this
study) and on the velocity. Note that modification of the
maximum velocity changes not only the saturation value,
but also the distribution of discrete action which are sam-
pled in v(t),w(t)€[0, Vmax] X [0, Wmax|. In other words, the
28 discrete actions are always scaled to fit the range of pos-
sible velocities. The dynamical model runs 10x faster than
the policy to prevent aliasing effects.
Corrupted environments are generated by multiplying

one of the physical parameters by a constant change fac-
tor f, while leaving the other parameters untouched. Such
a change results in a drop of performance on one hand, and
an increase of the distance to belief on the other. As men-
tioned in the main paper, the factor f causes a change in
environment parameters A F, which has different interpre-
tations depending on the physical quantity and its impact on
the dynamics. We unwrap Figure 2 and exposed the change
factor in Figure 12. In particular, we show the relationship
between the change factor and the distance to belief, and its
impact on SPL. We manually define suitable ranges for each
corruption type (damping, max. velocity and response time)
up to 0% SR, and evaluate the agents (b) and (c) from Ta-
ble 1 on using linearly sampled change factors
within the range.

Figure 12 shows that a fixed value of change factor f
can correspond to very different values of distance to be-
lief depending on the corrupted parameter, which moti-
vates the use of a proxy metric such as the distance of be-
lief. We also observe steeper curves for SPL when test-
ing the D28-instant variant compared to D28-dynamics ,
which confirms that training dynamic-aware agent allows
the adaptation to different dynamic unseen during training.

D. Probing future pose: variants

Our goal is to probe the existence of a plan in the latent
state of the navigation agent. To do so, we collected a
dataset of 500,000 navigation episodes generated from a
trained D28-dynamics agent and stored the latent state, ac-
tion and path (a, p:, ht). We split this dataset in proper
train/validation/testing sets (80%, 10%, 10%). During train-
ing, a random time instant ¢ is sampled in the episode, and
the probing network is supervised to predict the future po-
sitions P41, ..., Pr+ g from the first latent state h;. Future
latent states hy; are not provided to the probing network,
which can not use new observations to improve the pre-
dicted path. The probing network is trained to minimize

pos. loss
Teti| Tigi
Yt+i Yt+i] |5

|:COS 9t+i] _ [COS étﬂ}

sin 044 sin 64

H

Lprobin g = E

=1

2

(6)

rot. loss
assuming p; = [mt Yt Ot] and p; being the predicted
pose. We used the Adam optimizer (learning rate =10~%)
with a batch size of 64, a prediction horizon H = 20 and
performed 100,000 gradient updates. We tested different
architectures of the probing network:

Linear uses a straightforward linear layer per time step to

CVPR
#97

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

977
978
979
980
981
982
983
984
985
986
987

990

991

992
993
994
995
996

997



CVPR
#97

fort=0---T

ag, -

CVPR 2025 Submission #97. CONFIDENTIAL REVIEW COPY.

ag
I actio

2

In-domain
Dynamics

Corrupted
Dynamics

DBelief
()

p

Traj. with
training env.

Traj. with
= corrupted env.

WA Dgeliet

(b)

CVPR
#97

DO NOT DISTRIBUTE.

at ()

action

‘—I

Corrupted p
Dynamics

% Habitat

Corrupted env.

BIRGB camera
P 1. = Odometry
o lcy ™ Struct. vision

(@ Pointgoal

(c)

Figure 11. Comparing Prediction vs. Correction — steps in an end-to-end dynamic agent is achieved by testing the policy in an corrupted
environment where one of the step is made less accurate. Since changes in environment parameters A E are not comparable, we rely on the
proposed distance to belief to measure the impact of a change on the agent trajectory. (a) To compute this metric, we simulate trajectories
generated by two different dynamical systems albeit from the same sequence of actions. (b) The distance to belief corresponds to the
distance between the resulting trajectories without taking collisions into account. (c) While Dyelief is calculated by running an agent in
the corrupted environment with the same actions as the agent had done in-domain, of course the actual success rate of the agent in the
corrupted environment is calculated by letting the agent take its own decisions.
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Figure 12. Detailed results Prediction vs. Correction — for D28-dynamics (left) and D28-instant (right). The figures shows, for each
corruption type, the distance to belief and SPL score for different multiplicative factor f. We observe better robustness of the dynamic-
aware agent against changes in the robot dynamics. Non-linear dependence between change factor and impact on the agent trajectory
motivates the use of the distance to belief as a proxy to measure the effect of each corrupted environment.
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predict the future position from the initial latent state.
Vi, Pe+i = Linear; (hy), @)

Linear + non-linear(action,goal) exploits a non-linear
embedding of the previous action and the goal direction
(given in polar coordinates with respect to the episode start).

Vi, pr+s = Linear; (hy, MLP(@s4;-1.,9)) (8)

GRU-agent where we use the latent dynamics of the
trained agent itself for prediction. Recall that the hidden
state is updated by a GRU, cf. eq. (1), which we reproduce
here in a simplified notation without gates and only a single
layer,

h; = 0(Wh;_1 + Vo), ©)]

where o; is a concatenation of all observation features, W
is the matrix modeling latent dynamics, V projecting obser-
vations into the latent space, and o an activation function.
Yet, since future observations oy, are not available during
probing, we replace them by a transformation of the previ-
ous latent state performed by an MLP 1y (3 layers, 1024
units, TanH activated) which compensates the absence of
observations.

= o(Whyyi1 + ¢g(hipioq)) (10)

ﬁtJrT = ¢(h;+7)

All variants use a linear projection layer ¢ to map the latent
space to the predicted position p;.

E. Zeroing the hidden state of the agent

In Table 4 of the main paper we described results ablating
the memory of the agent, ie. setting the hidden GRU state
h; to zero. We argue that zeroing h; only makes sense if
at the same time we reset the episode specific coordinate
frame of the agent, which defines the static goal vector g
and the pose inputs p; and p§. This is motivated by the
fact, that the PointGoal task requires the agent to understand
where it is with respect to the goal, ie. it needs to have an
understanding of the (unobserved!) dynamic goal vector
g, which is defined in its own egocentric frame. It can only
do this by using the static goal vector g defined w.r.t. the
episode start, and localization information, provided by pj
and p¢, also in the same frame. The calculation can be done
by a simple rigid transform, but the noise of these inputs
will lead to a noisy signal. This noise can be filtered, for
which the hidden memory of the agent is likely used. For
this reason zeroing memory without resetting the episode
centric coordinate can potentially lead to very undesirable
effects.

F. Details on the planning heatmap

In order to gain deeper insights into the specific areas where
our robot encounters difficulties in navigation, we gener-
ated heatmaps that visually highlight challenging locations

within our environment. This allows us to focus our ef-
forts on improving the robot’s navigation in these identified
areas. Below is the detailed description of the heatmap gen-
eration.

Let p; = [J?t Yy Ut wt] r represents the state of an
agent, where z;,y, are its 2D coordinates, v; is the linear
velocity, and w; is the angular velocity. Given a goal g, we
define T (py, g) as the time to goal, which is the travel time
to reach the goal. This value is computed by solving the
Eikonal equation with fast marching, assuming the agent
navigates at full speed and slows down near the walls. For
each navigable point on the grid, the velocity is computed
as v(z,y) = V x d(z,y)/K where V is the max velocity
of the agent, d is the distance to nearest wall and K = 0.5
a weighting coefficient.

We introduce a cost function C(py, a) at state p;, taking
an action q as:

pos

—~
C(pt,a) =10 X T(pi+1,9)

angle

VT (Pt41,9) >
—VyT(PtJrhg)

slow down near goal

+ (Ut+1 - BT(pt+17g))

rotation speed

+ 0.1 x tan(

collision

+ 1073 x w| +10° x P(pey1) (11)

where p; 11 = D(py, a) is the next state of the agent taking
the action a given by the dynamical model D, P(p;) the
collision indicator, equal to 1 if the agent collides and 0
otherwise, and ( represents the braking strength, or how
rapidly the agent can decelerate.

Each term in the cost function has a specific purpose:
* Position cost: 10 x T (ps+1,9) based on the time esti-
mated to reach the goal.

VaT (pt+1,9)
7vy7-(pt+1 »9)
alignment with the goal direction.

* Slowing near goal: v;11 — 57 (pi+1,9g) slows the agent
down as it approaches the goal.

* Rotation speed cost: 1073 x |w;| discourages high an-
gular velocities.

« Collision penalty: 10% x P(p;, 1) a large penalty applied
if the agent collides.

This cost function is designed to balance reaching the goal

quickly, maintaining alignment, slowing down near the

goal, and avoiding high rotation speeds and collisions. Then

we can replay the recorded trajectory, knowing the taken

action at every position, we calculate the following metric

M(t) = C(ptt1,at+1) — C(pt, ar). To create a smooth,

continuous heatmap, we apply a Gaussian kernel at each po-

sition (z¢, y¢), with a mean ¢ = M (t) and standard devia-

* Angle alignment: 0.1 x tan ( ) encourages
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Sim(+dyn)

Method (HM3D/2.5K)
SR% SPLY% SCT %

(a) D4 91.6 764 204 29.1 181 2.0

(b) D28-instant 983 824 66.5 276 11.6 5.0
(c) D28-dynamics 97.6 823 522 976 823 522

Table 6. Evaluation in the training domain. (Left) the agent is
evaluated in the same action space and dynamics used for training.
This evaluates the difficulty of the task, and not the transfer to the
real physical robot. (Right) the agent is evaluated in simulation
with a dynamical model — reproduced from Table 1 of the main

paper.

tion o = 0.5. This results in a heatmap that provides a clear
spatial representation of the robot’s performance across the
environment.

G. Evaluation in the training domain

We evaluate the three agents of Table | also in a third
setting: “ Simulation (train domain)” evaluates them in
simulation w/o motion model, ie. with instantaneous veloc-
ity changes and constant velocities between time steps, and
with their respective action spaces. This evaluates the dif-
ficulty of the training task and does not provide indications
on performance in a real environment.

H. Evidence of Tunnel vision

We found some evidence of “tunnel vision”, by which we
mean that the agent attempts strategies, which a human
could easily discard even without having access to a map.
This is not necessarily a problem for successful completion
of the episodes, as the agent detects blockings and searches
for alternatives, eventually finding the goal. However, it
is not efficient, and translates into lower then optimal SPL
measures.

An example is seen in Figure 13. In this episode, start-
ing at position @ and aiming for the goal position at @, the
agent tries to pass through the path indicated by the red tra-
jectory, doing a turn into the area indicated by @ although
it is clearly visible (from position @ already), that there is
no path possible between @ and ®. Although the dotted
part is occluded, a human would be able to estimate that it
is blocked.

I. Details on visual localization

As an alternative to Adaptive Monte-Carlo Localization
(AMCL)[76], we experimented with a custom visual local-
ization system, cf. Table 5 in the main paper. Here we
provide more details on the setup.

For the pre-mapping part, we follow a procedure simi-
lar to the one describe in [45]: a dedicated robot is driven

Figure 13. Tunnel vision: the agent attempts to navigate along
the red trajectory, although it is clearly visible that it is blocked,
although the dotted part is occluded.

through the environment capturing synchronized 3D LI-
DARs, RGB cameras and odometry data. Both standard
Simultaneous Localization And Mapping (SLAM) using It-
erative CLosest Point (ICP) on the LIDAR point-clouds
and Structure-from-Motion (SfM) matching local features
in RGB frames are used to recover the poses of all RGB
frames relative to an absolute, unified, coordinate system.
An elastic-search database stores the 12k RGB frames, as-
sociated with a global descriptor, and local descriptors of
keypoints computed by fast-R2D2 [63].

The navigating agent can then query the visual localiza-
tion system by sending an image captured by its own RGB
sensor and its last pose estimate, which locally combines
the results of the last visual localization query and odome-
try. First, as described in [34], the global descriptor for the
image is used to quickly retrieve a set of nearest neighbors
from the database. Then local R2D2 key-points in the im-
age are matched against the ones of the retrieved neighbors
and from this relative poses estimates and the absolute cam-
era poses of the neighbors, a consensus is established for
the absolute pose of the camera of the agent, which is sent
back to the agent, where it is fused into its own localization
optimization graph (with previous loc and odometry).
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