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Supplementary Material

In the supplementary, we first present more details of
the proposed U-shaped DISCO Neural Operator (UDNO, in
Section A), a main building block of NOi and NOk of our
framework. We then provide more details of the machine
learning framework implementation (Section B) as well as
additional numerical results of the multi-pattern and multi-
rate undersampling experiments (Section C). In Section D
we include additional ablation and analysis, on comparing
CNN and NO kernels and their performance under the same
parameter size, followed by details about DISCO and the
justification of its basis choice in Section E.

A. UDNO Architecture

The motivation behind the U-shaped architecture is to cap-
ture multi-scale features by integrating high-level contex-
tual information with low-level details. Its encoder-decoder
structure, enhanced by skip connections, enables precise lo-
calization of features even with limited annotated data. In
our approach, we extend this idea through UDNO, which
is applied to both the physical and frequency domains for
MRI reconstruction—unlike methods such as FNO [24] used
for PDE data that incorporate a frequency cut. This differ-
ence arises because PDE data typically comes from smooth
functions, where low frequencies are dominant and high fre-
quencies mainly represent noise. In contrast, imaging data
benefits from retaining both low-frequency information and
high-frequency details (e.g., edges).

We provide additional details of the proposed UDNO
(U-Shaped DISCO Neural Operator) architecture. Fig. 7
depicts the overall architecture, which mimics the U-Net
[37]. We use the updated implementation of the U-Net in
[40]. Our network architecture has two differences. First, all
traditional convolutions are replaced with their DISCO coun-
terparts. Second, transpose convolutions are replaced by an
interpolation upsampling step, followed by a DISCO2d layer,
InstanceNorm layer, and LeakyReLU activation. DISCO2d
layers function as drop-in replacements for traditional 2d
convolution layers. They do not change the spatial dimension
of the input. The UDNO is an end-to-end neural operator.

As in the traditional U-Net [37], each encoder block
halves the spatial dimensions and doubles the feature chan-
nels. Each decoder step (upsampling + decoder) doubles
the spatial dimensions and halves the feature channels. Skip
connections are included, as in the original architecture. All
components of the UDNO operate in the function space
and are not tied to a specific discretization, thus making the
model an end-to-end neural operator.

B. Additional Implementation Details
B.1. Undersampling Configurations

We summarize the configurations of different CS-MRI un-
dersampling rates in Table 5 and undersampling patterns in
Fig. 8.

B.2. Learning Sensitivity Maps for Multi-Coil MRI

In MRI reconstruction, the sensitivity map Si for the ith

coil is needed for coil reductions and expansions. Inspired
by [40], we use a UDNO with 4 encoder/decoder steps, 8
hidden channels, 0.02 DISCO radius (assuming the domain
is [−1, 1]2), and the kernel basis from [26] with 1 isotropic
basis and 5 anisotropic basis rings, each containing 7 basis
functions. We use this UDNO to predict the sensitivity map
Si from the input coil measurement ki. We then follow [40]
to combine multiple coils weighted by the corresponding
learned sensitivity maps.

B.3. UDNO and DISCO Implementation Details

Both NOk and NOi use DISCO layers using the linear-
piecewise kernel basis from [26] with 1 isotropic basis and
5 anisotropic basis rings, each containing 7 basis functions.
The NOk (measurement space neural operator) is imple-
mented as a UDNO with 2 input and output channels, 16
hidden channels, and 4 depth (encoder/decoder steps). NOk
DISCO NOi have a radius cutoff of 0.02. The NOi (image-
space neural operator) is implemented as a UDNO with 2
input and output channels, 18 hidden channels, and 4 en-
coder/decoder steps. NOi DISCO kernels have a radius
cutoff of 0.02 with the same internal basis shape. We train
both our model and the baseline with SSIM loss, and 0.0003
learning rate.

To compare the choice of basis function (piecewise linear,
Zernike, and Morlet), we train our neural operator with a
single cascade on a 30% subset of the fastMRI knee dataset
for 15 epochs. We find that empirically, the piecewise lin-
ear basis outperforms both the Zernike and Morlet bases
by at least 3 PSNR. All kernels have a similar number of
parameters. Results are provided in Table 4.

B.4. Baseline Hyperparameter Search Details

For the diffusion baseline CSGM, we tuned step_lr and
mse parameters in their official github repo) using Bayesian
optimization. The search algorithm was run on 6 represen-
tative images outside of the test set for around 50 iterations
with the search space defined in Table 9. For E2E-VN base-
lines, we tune the number of layers in each cascade, learning
rate and schedule.

https://github.com/utcsilab/csgm-mri-langevin/blob/main/main.py


Figure 7. UDNO architecture. We propose a U-shaped neural operator (UDNO) to capture multi-scale features of the input. The UDNO
uses discrete-continuous convolutions (DISCOs) [31] as the local integral operator. The final 1x1 convolution allows the module to flexibly
project to the desired number of output channels and is resolution invariant by virtue of being a pointwise operation. The UDNO is an
end-to-end neural operator.

Kernel Basis PSNR ↑ SSIM ↑ NMSE ↓
Piecewise Linear 36.125 0.884 0.009
Zernike 32.983 0.838 0.017
Morlet 32.755 0.835 0.018

Table 4. Kernel basis experiment results. We train our neural
operator model with the piecewise-linear, Zernike, and Morlet
bases, comparing empirical reconstruction results. The Piecewise
Linear basis outperforms both the Zernike and Morlet by at least 3
PSNR.

C. Additional Results Across Undersampling
Patterns and Rates

We summarize the numerical results of the performance
of the proposed neural operator (NO) and the End-to-End
VarNet baseline [40] across different undersampling patterns
and rates on the fastMRI [44] knee and brain dataset.

Alias Acceleration rate Center fraction rate

16× 16 0.02
8× 8 0.04
6× 6 0.06
4× 4 0.08

Table 5. k space undersampling configurations (acceleration and
center fraction parameters) used for MRI experiments. We follow
the [40] and [40]

fastMRI Knee. Results for multiple patterns are in Table
2 of the paper and those for multiple rates are in Table 6.

fastMRI Brain. Results for multiple patterns are in Table
7 and those for multiple rates are in Table 8.



Figure 8. Undersampling mask patterns. The visualized patterns
are all for the 4× acceleration rate. Top: Rectilinear patterns: Eq-
uispaced, Random, Magic. Bottom: Irregular patterns: Gaussian,
Radial, Poisson.

NO (ours) E2E-VN [40]

Rate PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
4× 37.215± 2.466 0.897± 0.071 38.329± 3.062 0.905± 0.073
6× 35.452± 2.150 0.872± 0.073 32.770± 2.064 0.851± 0.069
8× 33.598± 1.892 0.848± 0.071 28.346± 2.407 0.780± 0.062
16× 29.241± 2.402 0.779± 0.070 23.181± 3.558 0.629± 0.090

Table 6. fastMRI Knee performance across different under-
sampling rates. We compare our NO model’s knee reconstruction
performance to the E2E-VN [40], assessing for robustness against
different undersampling rates. Both models are trained on equis-
paced 4× knee samples, and evaluated across 4×, 6×, 8×, and
16× equispaced validation samples. Notice that over the irregular
patterns, our model shows an increase of 3.22 dB PSNR and 5.8%
SSIM.

NO (ours) E2E-VN [40]

Pattern PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Equispaced 37.106± 1.646 0.952± 0.010 38.063± 2.701 0.962± 0.011
Random 36.051± 1.665 0.945± 0.015 37.025± 2.187 0.957± 0.010
Magic 38.270± 1.985 0.960± 0.011 38.463± 2.967 0.965± 0.011
Radial 36.498± 1.792 0.948± 0.015 25.225± 2.126 0.722± 0.063
Poisson 33.936± 2.047 0.924± 0.020 22.117± 1.487 0.670± 0.046
Gaussian 32.725± 2.004 0.910± 0.018 25.283± 3.336 0.730± 0.098

Table 7. fastMRI Brain performance across different undersam-
pling patterns. We compare our NO model’s brain reconstruction
performance to the E2E-VN [40], assessing for robustness against
different undersampling patterns. Both models are trained on equi-
spaced 4× brain samples, and evaluated across multiple patterns.
Notice that over the irregular patterns, our model shows a signifi-
cant 10 dB PSNR and 22% SSIM improvement on average. Our
NO model is robust to different patterns, while the E2E-VN overfits
to the rectilinear patterns (equispaced, random, magic).

D. Additional Ablation Studies and Analysis

Rescaling CNN Kernel Size for Consistent Ratio. As il-
lustrated in Fig. 1b, CNNs have inconsistent kernel size

NO (ours) E2E-VN [40]

Rate PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
4× 36.851± 2.334 0.952± 0.027 38.294± 3.030 0.959± 0.027
6× 34.575± 2.404 0.934± 0.030 33.418± 2.675 0.925± 0.030
8× 32.246± 2.306 0.912± 0.031 28.827± 3.197 0.856± 0.047
16× 27.561± 2.620 0.836± 0.044 22.694± 3.097 0.594± 0.104

Table 8. fastMRI Brain performance across different under-
sampling rates. Comparisons of the reconstruction quality of our
NO model with the E2E-VN [40] across various undersampling
rates demonstrate that our model maintains robustness at higher
undersampling rates and the E2E-VN shows significant degradation
in both metrics, particularly at extreme undersampling (e.g., 16×).

Parameter Lower bound Upper bound Distribution

step_lr 10−5 10−4 Log-uniform
mse 0 5 Uniform

Table 9. Hyperparameter search space for the diffusion baseline.

NO
(ours)

Convolution
w/ kernel 
interpolation

Figure 9. Ablation study: consistent kernel size to image size ra-
tio for both CNNs and NOs. As illustrated in Fig. 1b, CNNs have
inconsistent relative kernel size when image resolution changes.
In this ablation study, we manually resize the CNN kernel with
bilinear interpolation to make its relative kernel size consistent for
different resolutions and compare the performance with the NO.

to image size ratio when image resolution changes. We
want to compare NO kernels, parameterized in the function
space, with CNN kernels by eliminating the factor of kernel
size ratio with CNN kernel interpolation. In this ablation
study, we manually resize the CNN kernel in [40] with bilin-
ear interpolation to make its relative kernel size consistent
for different resolutions and call it E2E-VN-INTERP. We
compare its performance with the NO. Specifically, in a
super-resolution experiment as follows, we train both our
NO and the E2E-VN-INTERP on 320 × 320 equispaced
4× knee samples, with a similar setting as in Section 4.4
(NOi MRI higher-resolution experiment). Then, we perform
zero-shot inference on higher resolution 640× 640 samples
in image space.

Our NO model leverages DISCO convolutions, which
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Figure 10. Zero-shot inference on higher-resolution samples
(NO vs. E2E-VN with interpolated kernels). While both models
are able to recover overall structure, notably, the E2E-VN suffers
from hallucinations and noise artifacts in the area surrounding the
subject’s knee.

enable zero-shot inference on arbitrary resolutions, making
them inherently resolution-agnostic (Fig. 1a). In contrast,
traditional CNN kernels are designed for fixed resolutions.
For instance, the original 3 × 3 kernels of the E2E-VN
model, backed up by CNNs, cannot directly scale to the
larger 640× 640 inference resolution. One approach to ad-
dress this is by resizing the learned kernels to 6 × 6 with
bilinear interpolation while preserving their norms, as we
follow [26] and use quadrature weights to perform the inte-
gration. We adopt this method, comparing our NO model
with the kernel-scaled E2E-VN-INTERP model. Side-by-
side visualization results are presented in Fig. 10, where
we observe a slightly worse reconstruction performance in
the background region of E2E-VN-INTERP compared to
VN. Also, E2E-VN-INTERP outperforms the E2E-VN with
inconsistent kernel size, validating the need to keep a consis-
tent relative kernel size.
Performance Under Same Parameter Size. Additionally,
we conduct an experiment comparing the NO and E2E-VN
models, ensuring both have an identical number of trainable
parameters (21.7M). Both models are pretrained on 4× equi-
spaced fastMRI brain samples for 10 epochs. Then, both are
trained for an additional epoch, in which they see samples
from all patterns together. We plot cross-pattern performance
in Fig. 11.
Functions of NOk. We perform an ablation study of our
NOk module, training both models on a small subset of the
full 4× equispaced training set and plot zero-shot SSIM
scores across all patterns. The NOk increases zero-shot
SSIM by 5.3% across irregular patterns (Fig. 12).
FLOPs of models. We measure the number of forward
passes and GFLOPs required in a single inference in Table

Figure 11. Comparison between same parameter (21.7M) NO
and E2E-VN++ with NMSE (↓). While performance is similar on
rectilinear patterns, on irregular patterns our NO model achieves
lower NMSE than the E2E-VN of same size. On the Poisson
undersampling pattern, we achieve 45% lowering NMSE. On the
Gaussian undersampling pattern, we achieve 15% lower NMSE.
We also notice that our NO model exhibits lower variance in its
prediction performance.

Figure 12. The ablation study of NOk.

10. Notice that diffusion requires multiple forward passes
for a single inference, which is why the computational cost
is several order of magnitudes greater.

Metric NO (ours) CSGM ScoreMRI PnP-DM

# forward passes 1 3465 4000 2651
GFLOPs 171 823K 950K 630K

Table 10. Comparison of GFLOPs and forward passes required per
method.

E. DISCO: Discrete-Continuous Convolutions
E.1. Definition

Discrete-continuous (DISCO) convolutions [31] generalize
the standard (continuous) convolution to Lie groups and quo-



tient spaces. The approach is inspired by conventional convo-
lutional layers, which efficiently implement local operations
in neural networks but—upon grid refinement—converge to
pointwise linear operators.

Definition E.1 (Group Convolution). Let κ, v : G→ R be
functions on a group G. Their convolution is defined as

(κ ⋆ v)(g) =

∫
G

κ(g−1x) v(x) dµ(x), (9)

with g, x ∈ G and dµ(x) the invariant Haar measure.

Definition E.2 (DISCO Convolutions). Given a quadrature
rule with points xj ∈ G and weights qj , the convolution (9)
is approximated by

(κ ⋆ v)(g) ≈
m∑
j=1

κ(g−1xj) v(xj) qj . (10)

Here, the group action is applied analytically to κ, while the
integral is discretized.

For a discrete set of output locations {gi}, this becomes a
matrix-vector product:

m∑
j=1

κ(g−1
i xj) v(xj) qj =

m∑
j=1

Kij v(xj) qj , (11)

with Kij = κ(g−1
i xj). When κ is compactly supported, Kij

is sparse, with sparsity determined by the grid resolution
and kernel support. A learnable filter is obtained by param-
eterizing κ as a linear combination of a chosen set of basis
functions.

For comparison, consider a standard convolutional layer
with stride 1, n input channels, a single output channel, and
kernel K = (Ki)

S
i=1 ⊂ Rn (with odd size S). On a regular

grid Dh = {xj}mj=1 ⊂ R with spacing h, the output at
y ∈ Dh is given by

ConvK [v](y) =

S∑
i=1

Ki · v
(
y + zi

)
, (12)

with zi = h
(
i− 1− S−1

2

)
, and zero-padding.We see that

h → 0, limh→0 ConvK [v](y) = K̄ · v(y) with K̄ =∑S
i=1 Ki, this means the convolutional layer is converging to

a pointwise linear operator as the receptive field with respect
to the underlying domain D is shrinking to a point. DISCO,
however, does not converge to the pointwise operator.

E.2. Kernel Basis

In our DISCO framework, the kernel κ is parameterized us-
ing a basis for L2(D). The piecewise-linear, Zernike, and
Morlet kernels are all parameterized by bases for L2(D). We

show a specific case, using the (complex) Zernike polynomi-
als, defined by

V l
n(x, y) = Rl

n(ρ)e
ilφ, x = ρ cosφ, y = ρ sinφ, (13)

where n is the total degree, |l| ≤ n, and n− |l| is even. The
radial polynomials Rl

n(ρ) satisfy∫ 1

0

Rl
n(ρ)R

l
m(ρ) ρ dρ = cln δn,m, (14)

for some nonzero constant cln. There are exactly (n+1)(n+2)
2

linearly independent polynomials of degree ≤ n, so every
monomial xiyj is a finite linear combination of Zernike poly-
nomials. By the Weierstrass theorem, they form a complete
basis for L2(D). (More details are in Appendix VII of [2].)
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