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7. Additional experiments

7.1. Image super resolution
As the learning process of an INR enables the discovery of a
continuous functional mapping from low-dimensional spa-
tial coordinates to high-dimensional signal space, one gains
the ability to query the learned representation as needed.
Consequently, unlike grid-based image representations, this
representation becomes decoupled from the spatial reso-
lution of the image, allowing for image super-resolution
through interpolation of the learned representation.

For the purpose of demonstrating image super-
resolution, we selected two images with different levels of
detail complexity. The first, referred to as the ”boy im-
age” from the Set 14 Dataset [1], is a dynamic image that
contains sharp frequency contents throughout the image,
which could potentially challenge the detail retrieval capa-
bilities of super-resolution. The second image, a woman,
where sharp frequency details are only concentrated pri-
marily around facial features, offering a localized test for
the super-resolution process (See Fig. 8). Both images were
downsampled by a factor of two and then used to train the
INR. The trained INR, unconstrained by spatial resolution,
was then used to infer high-resolution images.

The performance of image super-resolution demon-
strates the generalizability of an INR. As evident from the
results, MIRE consistently exhibits not only the best PSNR
and SSIM values across both cases but also the most visu-
ally coherent result, irrespective of the complexity of the
image. Among the INRs, WIRE shows a notable deficiency
in generalizing to a large set of unseen coordinates dur-
ing testing, particularly evident in complex images. For
example, in the case of the ”boy image,” WIRE struggles
to generalize the down-scaled image’s implicit mapping.
When attempting super-resolution, WIRE introduces a sig-
nificant number of random values for unseen coordinates,
highlighting its limitations in handling images with vary-
ing complexity levels. Conversely, in the ”women image,”
WIRE demonstrates a more reasonable representation. A
simillar situation can be seen from both GAUSS and MFN.
Therefore, indicating a dependency of WIRE, GAUSS, and
MFN’s super-resolution capabilities on the detailedness of
an image. These methods tend to excel with images where
details are localized, such as the ”women image,” but fail
with highly detailed images like the ”boy image”.

A closer examination of SIREN’s super-resolution im-
ages reveals a learned low-passed representation, missing
high-frequency components in the decoded high-resolution
image. In contrast, MIRE exhibits unparalleled perfor-

mance in all scenarios tested, confirming the robustness
and reliability of its learned representation. The perfor-
mance of MIRE is consistent across different types of im-
ages. These findings further corroborate our hypothesis: an
INR equipped with an appropriately sequenced activation
framework learns a superior representation than a fixed se-
quence of activations that depends on the given signal.

7.2. Edge detection
INRs are characterized by their inherent ability to encode
signals in an implicit manner, where a key attribute of a
generalized INR lies in its ability to undertake tasks which
are typically reserved for explicit representations. With the
explict signal representations, especially with images, the
spatial filters like Sobel, Gaussian, Canny, etc., enable the
extraction of edges. This process is essential for activities
like identifying the boundaries of objects, detecting text, or
recognizing facial features, all of which rely significantly
on precise edge detection [40]. Even though it’s possible to
obtain edge maps from an INR through its decoded outputs,
INRs provide the benefit of representations that are learned
and differentiable. Therefore, an INR must not only pre-
cisely capture the signal but also facilitate the retrieval of
its gradient data. For an INR to efficiently function as an
edge detector, an INR requires to encode pixel-level rela-
tionships within its weights and biases.

The capabilities of extracting edge maps using INRs be-
come evident when applied to an image which has clear vi-
sual edges, like the Monarch picture from the Set 5 Dataset
[1]. To identify the possibility of edge detection capabilities
of INRs, initially, the image representation has been learned
through training the INR. Thereafter, the gradient operator
is utilized between this learned model and the coordinates
used during training. Figure 9 illustrates the RGB image of
the Monarch alongside its edge maps derived from INRs.

MIRE stands out by providing the cleanest and most
well-defined edge map, identifying necessary edges with
minimal false edge identifications. Among other INRs,
while MFN can identify edges, its edge map often contains
excessive texture content, potentially leading to false edge
detection. GAUSS on the other hand, produced smooth
edge maps, which can diminish the true edge signal and re-
sult in a less reliable representation. In contrast, MIRE pre-
serves intricate patterns, offering a more accurate portrayal
of the butterfly’s natural markings. SIREN also demon-
strates its effectiveness as an edge detector, leveraging its
built-in capabilities for identifying edges. However, even in
the absence of such inherent advantages, MIRE excels in de-
tecting edges, highlighting its proficiency in capturing com-



Figure 8. Image super resolution capabilities of MIRE. The top row showcases super resolution results for the ”boy image,” where it
contains a rapidly varing dynamic content throughout the image, while the bottom row depicts a woman’s picture with localized frequen-
cies around the face region. MIRE emerges as the sole INR consistently delivering the highest PSNR and SSIM scores for both cases,
showcasing its superiority in learned implicit neural representation.

plex patterns and delivering precise representations. There-
fore, MIRE showcases its effectiveness as a reliable edge
detector compared to existing state-of-the-art INRs.

7.3. High frequency encoding capabilities

A straightforward method to evaluate the high-frequency
encoding capabilities of INRs are by assessing their effec-
tiveness in representing sharp frequencies. This can be
achieved by examining a simple image comprised solely
of sharp transitions, where the abrupt color changes in the
spatial domain correspond to high-frequency components in
the frequency domain.

For this experiment, we selected the image displayed on
the left side of Fig. 10. INRs were then trained on this im-
age. Once each INR had learned the implicit representation,
it was decoded by inputting the corresponding coordinates.
Subsequently, we obtained normalized error plots compar-
ing the ground truth with the decoded representations.

As illustrated in Fig. 10, MIRE exhibits the smallest
error margin between the decoded image and the ground
truth, in comparison to other models such as SIREN and
WIRE, which demonstrate noticeable errors even in areas of
uniform color. This outcome distinctly highlights MIRE’s
superior capability in accurately encoding high-frequency
components. Such precision in representation validates the
underlying hypothesis of MIRE in frequency domain per-
spective as well: the sequence of activations within an INR
should adapt based on the characteristics of the input signal.

8. Additional results
8.1. Image representation
Unlike traditional INRs, which use the same activation
function throughout the network with suboptimal parame-
ters, that may not be ideal for a given signal, MIRE offers a
framework that allows the network to adapt its internal con-
figuration to better match the signal, and produces an INR
which is matched to the given signal. This added flexibil-
ity enables MIRE to consistently outperform existing INR
methods. This is evident from our thorough evaluation of
MIRE on the Kodak image dataset, as shown in Fig. 3. Fur-
thermore, we have also provided decoded representations
of the Kodak dataset, which are presented in Fig. 11. More-
over, the average PSNR and SSIM metrics for MIRE and
baseline models across the dataset are summarized in Tab. 1.

8.2. Image inpainting
A key difference between traditional signal representation
mechanisms and INRs is that INRs attempt to establish
a continuous implicit functional relationship between nor-
malized coordinates and signal values. The generalizability
of this relationship depends heavily on the type of activa-
tion function used. MIRE, by exploring its dictionary to
find activation atoms that best match the given signal and
task, consistently outperforms all INR baselines, regardless
of the specific task.

This is clearly demonstrated by the thorough evaluation
we conducted on the image inpainting task using the en-
tire Kodak dataset. The PSNR variations across all meth-



Figure 9. MIRE’s edge detection capabilities: Edge maps obtained through applying the gradient operator on the learned representation.

Figure 10. Ability to encode high frequencies in INRs. The results present normalized error plots obtained after training each INR on
the ground truth image. It is evident that MIRE exhibits the lowest error among the INRs when encoding signals into their weights and
biases. Notably, it excels in encoding high frequencies exceptionally well compared to the other INRs as MIRE is tailored to the given
signal. Conversely, WIRE and SIREN demonstrate errors not only in encoding high-frequency content but also in constant color areas.

ods are shown in Fig. 4. As shown, MIRE consistently
achieves the highest accuracy metrics for every image in
the dataset. Sample inpainting outcomes are displayed in
Fig. 12. The first column represents the ground truth image,
while the second column shows the text-masked image. The
text mask used contains different fonts and sizes, with over-
lapping parts, and this same mask was applied to the entire
dataset. This presents a significant challenge for INRs to
recover the original signal. However, as seen, MIRE recov-
ers the original image with the highest accuracy. Further,
MIRE does not showcase a tendency towards overfitting to
the training data, nor does it tend to produce low-pass sig-
nal representations lacking fast-varying components. The
average PSNR across the dataset is presented in Tab. 2.
An additional image inpainting experiment has been con-
ducted with a different text mask, and the results obtained
are shown in Fig. 13. In this experiment, a randomly gen-
erated text mask with varying font sizes is used. As evident
from the results, MIRE is the only architecture that achieves
the highest PSNR and SSIM values, indicating the best re-
covery compared to existing INRs.

8.3. Occupancy fields

The complete decoded occupancy fields, along with the
ground truth, are shown in Fig. 14. MIRE consistently de-

livers the occupancy field that is closest to the ground truth.
This capability is attributed to the ability of MIRE to find
the optimal activation sequence for each given signal.

8.4. Neural radiance fields

In addition to the novel views provided in Sec. 4.4, novel
views from different viewing angles and positions are pro-
vided in Fig. 15, and Fig. 16 for Chair and Hotdog datasets
respectively.

9. Explanations

9.1. Pseudo code of MIRE

For enhanced understanding of MIRE, we provide its
pseudo code in Algorithm 1. It’s important to highlight
that MIRE offers the flexibility to both expand and con-
dense its dictionary. This means elements can be added to
or removed from MIRE’s dictionary as needed. For exam-
ple, if we remove all activation atoms except for the Gabor
Wavelet, MIRE transforms into WIRE, but with layer wise
training.



Figure 11. Additional image representation results from the Kodak dataset: As shown by the results, MIRE is the architecture that
consistently delivers the cleanest image representation. Moreover, it not only excels in producing clean output but also achieves the highest
accuracy metrics.

Method PSNR (dB) SSIM
MIRE 36.55 0.93
WIRE 32.30 0.90
SIREN 32.19 0.88
GAUSS 31.34 0.84
MFN 30.15 0.85
INCODE 30.53 0.85
FINER 34.32 0.92

Table 1. Average metrics for image representation task across the entire Kodak dataset

Algorithm 1 Pseudo Code of MIRE

1: Input: Explicit signal representation
2: Output: Implicit Neural Representation
3: Initialization:
4: Dictionary← Dictionary of activation functions
5: N ← number of hidden layers
6: Model← MLP (single hidden layer, matching I/O

dimensions)
7: ∀j ∈ {1, . . . , N}, Model.activationj ← None
8: Minimum Lossj ←∞, Best Activationj ← None
9: for j ∈ {1, . . . , N} do

10: for activation function in Dictionary do
11: Model.activationj ← activation function
12: for epoch ∈ {1, . . . , num epochs} do
13: Train the Model
14: Find Lossj
15: if Lossj < Minimum Lossj then
16: Minimum Lossj ← Lossj
17: Best Activationj ← activation function
18: end if
19: end for
20: end for
21: Model.add a hidden layer
22: Model.activationj ← Best Activationj
23: end for

9.2. Spatial domain variation
In Fig. 17, the seven activation atoms used in MIRE are de-
picted, showcasing their spatial domain variations. These
activations include Sinc, Raised Cosine, Root Raised Co-
sine, Prolate Spheroidal Wave Function (PSWF), Gabor
Wavelet, Sinusoid, and Gaussian. The diversity of these
filters enables the MIRE framework to capture a wide range
of features, from sharp edges to smooth transitions, periodic
patterns, and localized details. This variety ensures the net-
work can represent different structures effectively, making
the method highly adaptable.

9.3. How does MIRE differ from baselines?
The MIRE’s dictionary consists of seven activation func-
tions, three of which, sinusoidal, Gaussian, and Gabor
wavelet, have been previously introduced in other studies.
This naturally raises the question of how MIRE differs from
these baselines. The key distinction lies in the initializa-
tion of activation function parameters. While earlier studies
used these same activation functions, their parameters (such
as α and β in the sinusoidal function, as noted in Sec. 3.2
of the main paper) were typically fine-tuned via exhaustive



Figure 12. Additional image inpainting outcomes for the Kodak dataset: MIRE’s performance can be attributed to its ability to
dynamically tailor the sequence of activations to the specific signal and task.

INR PSNR (dB) SSIM
MIRE 32.34 0.90
WIRE 29.82 0.85
SIREN 28.44 0.79
GAUSS 26.41 0.69
MFN 26.02 0.70
INCODE 30.39 0.87
FINER 30.78 0.89

Table 2. Average metrics for image inpainting task across the entire Kodak dataset

grid searches for each specific INR application. In contrast,
MIRE initializes the parameters of each activation function
either randomly or using their base configurations (for in-
stance, for a sinusoid, α = 1 and β = 0). As demon-
strated in Sec. 4.5 of the main paper, when baseline models
(which use a single activation function throughout the net-
work) are initialized with these configurations, they often
fail to achieve comparable performance. Therefore, unlike
these baselines, MIRE does not rely on any pre-optimized
activation function parameters, offering a more flexible and
robust approach.

9.4. Robustness of MIRE to random initializations
This section directly relates to Sec. 4.6, which provides a
detailed discussion of additional parameters. Furthermore,
we provide a mathematical inclined explanation of why
MIRE is robust to random initializations. The correspond-
ing results are shown in Tab. 3. We explain the robustness
as follows:

Larger solution space: Carefully initialization is nec-
essary for conventional INRs such as SIREN, limiting the
expressivity of INRs. Choosing an activation function adap-
tively for each layer can overcome this limitation, as the op-
timization process will automatically select the most suit-
able activation function from the available dictionary for

each stage, regardless of the initial conditions.

9.5. Total and effective number of epochs and learn-
ing curves

Compared to other INRs, MIRE’s total number of epochs
is determined by the size of the dictionary. As MIRE can
accommodate any dictionary size, let us assume the dic-
tionary contains k activations. For simplicity, consider a
model with three hidden layers. If each activation is trained
for x1, x2, and x3 epochs in the first, second, and third lay-
ers respectively, the total number of search epochs is given
by k × x1 + k × x2 + k × x3. In our representation exper-
iments, we set x1 = 100, x2 = 100, and x3 = 200. The
training plot for the third image from the Kodak dataset is
shown in Fig. 18. For the image representation task, we
used seven different activation functions, resulting in a to-
tal of 2800 epochs. To ensure a fair comparison, all other
baselines were trained for k × (x1 + x2 + x3) epochs. The
convergence plot for the baselines is displayed in Fig. 19.
When it comes to MIRE, with a dictionary size of k atoms
and n layers, let us assume that in the ith layer, MIRE is
trained for xi epochs. From the full set of

∑n
i=1 xi · k

epochs, MIRE extracts a signal-specific activation sequence
using only

∑n
i=1 xi effective epochs, as one activation is

only needed per layer, without any need for an exhaustive



Figure 13. Image inpainting capabilities of MIRE. The top row presents the ground truth and the masked image, where the text is random
with varying font sizes. It is evident that MIRE achieves the highest PSNR and SSIM values while producing the most visually coherent
inpainting outcome among the considered INRs.

grid search over activation function parameters.

10. Ablation studies
10.1. Effect of network hyperparameters
A study has been conducted to investigate the impact of
varying the number of hidden nodes and layers, and learn-

ing rate on performance. The results related to changes
in the number of hidden nodes are shown in left plot of
Fig. 20. It is evident that MIRE surpasses all existing INRs
regardless of the number of hidden neurons employed. This
superiority is attributed to MIRE’s ability to self-optimize
based on the input signal, ensuring that the optimal se-
quence of activations yields superior results compared to



Figure 14. Complete decoded occupancy fields: It is evident from these representations that most baselines showcase a low-pass decoded
representation, primarily due to the inability of their activation functions to effectively capture the rapidly varying components across the
INR. In contrast, MIRE delivers the occupancy field closest to the ground truth, achieving the highest IoU metric.

Distribution MIRE WIRE SIREN GAUSS
U(0, 1) 39.63 ± 0.53 21.11 ± 1.01 17.48 ± 2.54 16.92 ± 3.16
U(−1, 1) 39.51 ± 0.67 20.74 ± 1.51 15.66 ± 2.61 18.58 ± 0.41

U(−10, 10) 40.07 ± 0.66 37.35 ± 1.02 23.96 ± 6.81 24.01 ± 8.45
U(−100, 100) 36.32 ± 1.83 24.05 ± 6.80 35.70 ± 2.84 22.45 ± 1.96
N (0, 1) 39.97 ± 0.78 22.41 ± 4.03 15.93 ± 2.58 17.06 ± 3.17
N (0, 10) 38.92 ± 1.26 32.86 ± 4.79 28.87 ± 4.14 27.46 ± 4.78

Table 3. The PSNR variation of existing INRs when activation functions are drawn from different probability distributions.

pre-optimized INRs.

The middle plot of Fig. 20 depicts the effect of the
number of layers on the PSNR. As can be seen, MIRE
demonstrates exceptionally competitive PSNR metrics with
merely one or two hidden layers. This performance stands
out in contrast to other INRs, which begin with activa-
tion parameters already tailored for convergence. However,
MIRE starts with random parameter initializations, high-
lighting its efficiency in self-optimization to reduce the loss
between explicit and implicit representations. When the
model configuration expands to include three hidden layers,
MIRE’s ability to adapt and tailor its approach for the spe-
cific signal allows it to outperform all existing INRs, show-
casing its robust optimization capabilities.

Lastly, the right side plot of Fig. 20 illustrates MIRE’s
performance with log scale learning rate. As can be seen,
MIRE shows strong performance, maintaining a high PSNR
around 40 dB at a low learning rate of 10−3. Even when the
learning rate is increased by an order of magnitude to 10−2,
MIRE manages to sustain a relatively high PSNR. How-
ever, as the learning rate further increases to 10−1, there
is a noticeable decrease in PSNR, although it still performs
better than every baseline except MFN. On the other hand,
WIRE shows significant sensitivity to the learning rate. It
reaches its peak PSNR at a learning rate of 10−2, but its
performance drastically drops as the learning rate increases
further. This demonstrates that WIRE’s optimal learning
rate range is narrower, and its performance quickly deteri-



Figure 15. MIRE’s novel view synthesis capabilities on the Chair dataset: A closer inspection of the novel views generated by MIRE
reveals that its synthesized images capture finer details, such as the intricate carvings on the top of the chair and its legs, to a much greater
extent than the baselines. Additionally, MIRE successfully preserves the gold pattern on the chair’s cushion without excessively smoothing
it, unlike the baselines, which tend to produce low-pass representations. This ability to retain both fine details and texture while avoiding
over-smoothing highlights MIRE’s superior performance in generating realistic novel views.

orates outside this range. SIREN also demonstrates a de-
cline in performance, but its behavior is steadier compared
to WIRE. As the learning rate increases, SIREN’s PSNR
decreases consistently, never reaching the peak values ob-
served with MIRE or even WIRE. It can be concluded that,
MIRE stands out for its ability to maintain high PSNR val-
ues across a wider range of learning rates, highlighting its
robustness.

10.2. Effect of restricting the dictionary to one atom
A further ablation was conducted by restricting the dictio-
nary to contain only a single atom (i.e., k = 1). The ob-
served results are shown in Tab. 4.

Task MIRE Sinusoid Gaussian Sinc
Rep. 39.04 32.73 37.70 37.95
Inp. 37.57 34.82 36.09 35.56

Table 4. Performance (dB) for representation and inpainting tasks
when restricting the dictionary to one atom.

10.3. Effect of residual connections
The effect of residual connections has also been studied.
The results are shown in Tab. 5

Task With Residual Without Residual
Rep. 37.46 39.04
Inp. 35.75 37.57

Table 5. Performance (dB) for representation and inpainting tasks
with and without residuals.

10.4. Effect of weight initialization

In most recent INR literature, it has been suggested that
INRs equipped with space-frequency compact activation
functions are generally less sensitive to the weight initial-
ization mechanism, unlike those using sinusoidal activa-
tions [24, 25]. All the presented experimental results in
this study is obtained through Pytorch’s default weight ini-
tialiation scheme. In this weight initialization process, the
standard deviation (stdv) is defined as the reciprocal of the
square root of the number of input units nin. Specifically,
stdv = 1√

nin
, where nin represents the number of features

or input dimensions in the linear layer. The weights of the
layer are then initialized by drawing each element of the
weight matrix W from a uniform distribution in the range
[−stdv, stdv], i.e.,



Figure 16. MIRE’s novel view synthesis capabilities on the Hotdog dataset: Upon closer inspection of the novel views generated by
MIRE, it is evident that MIRE produces more realistic and detailed representations compared to the baselines. Specifically, MIRE captures
the fine texture of the hotdog bun and the subtle lighting effects on the plate and condiments, which are much closer to the ground truth. In
contrast, the baseline methods, such as WIRE and SIREN, tend to over-smooth the details, losing the sharpness in the condiments and the
realistic shadows around the plate. MIRE not only preserves the structure and texture of the hotdog but also handles the complex lighting
conditions more effectively, resulting in the most visually accurate and high-fidelity novel views.

Figure 17. Spatial domain activation function variation. MIRE benefits from all types of activations, as each has unique spatial and
frequency characteristics.



Figure 18. PSNR variation of MIRE with epochs: MIRE’s training procedure is sequential. Initially, it optimizes a single hidden-layer
INR, changing the activation function of the first layer every 100 epochs. Once the matched activation for the first hidden layer is found,
a second hidden layer is added. The network is then trained while changing the activation function of the second layer every 100 epochs.
After determining the matched activation for the second layer, a third hidden layer is added, and the network is retrained, changing the
activation function of the third hidden layer every 200 epochs.

Figure 19. PSNR variation of the baselines for the third Kodak image

Wij ∼ U
(
− 1
√
nin

,
1
√
nin

)
This initialization strategy helps in keeping the weights

small enough to ensure stable learning by preventing large
gradients during the early stages of training. However, as
different weight initializations often lead to different train-
ing dynamics of the network, we checked MIRE’s perfor-
mance and the obtained activation sequences for different
weight initialization schemes. For this experiment we uti-
lized the Parrot image in the main paper. The obtained re-
suls are shown in Tab. 6.

As shown in Tab. 6, the sequence of activations changes
when the weight initialization mechanism of the network is

altered. This can be attributed to the fact that MIRE op-
timizes the network starting from the given weight initial-
ization scheme, attempting to navigate the loss landscape
toward a local minimum. When the distribution of initial
weights is significantly changed, it affects the optimization
trajectory. The network’s parameters are adjusted based on
gradients calculated from this starting point, and the train-
ing dynamics follow different paths depending on the ini-
tial conditions. Since the loss landscape may contain mul-
tiple local minima, the optimization path taken by the net-
work can vary. This explains why different activation func-
tion sequences are optimal for different weight initializa-
tions—each initialization leads the network to explore a dif-
ferent part of the loss landscape, and the network adapts



Figure 20. Effect of the MLP architecture’s hyperparameters on MIRE’s performance

Weight Initialization Mechanism Sequence PSNR (dB)
Pytorch Default Sinc, Gaussian, Gabor 39.04
Xavier Normal PSWF, Gaussian, Gaussian 37.55

Orthogonal RRC, Gaussian, Gaussian 37.15
SIREN-like (α ̸= 30) PSWF, PSWF, Gaussian 36.57
SIREN-like (α = 30) PSWF, Sinc, PSWF 36.73

Table 6. Comparison of weight initialization mechanisms

its activations accordingly to minimize the loss. Therefore,
due to the variability in the loss landscape and the depen-
dence on the starting point W0, the training process may
converge to different local minima, resulting in variations in
the matched activation sequences for each weight initializa-
tion scheme. Therefore, it can be concluded that PyTorch’s
default weight initialization is the most effective for MIRE.

10.5. Effect of positional encoding

Positional embedding schemes are often utilized in INRs
as a method of coordinate transformation. This technique
functions similar to a frequency modulation mechanism, en-
abling the embedding of high frequencies within the signal.
In our study, we assessed the performance of MIRE when
incorporating this coordinate transformation.

The left side of Fig. 21 displays the decoded represen-
tations obtained from MIRE with positional embedding,
while the right side shows those from MIRE without the
positional embedding. Given that MIRE adopts a sequen-
tial training approach as outlined in Sec. 9.1, it allows for
the observation of the decoded image at each layer. These
images, referred to as ’Layer 1’, ’Layer 2’, and ’Layer 3’ in
Fig. 21, demonstrate the outcomes at each stage.

The comparison for the selected image reveals that the
integration of positional embedding within MIRE results in
improved performance for both the first and second layers,
in contrast to the standard MIRE without any positional em-
bedding. However, upon determining the best activations
for the initial two layers, the introduction of the third layer
shows that the standard MIRE, devoid of positional embed-

ding, optimizes the MLP in a manner that it outperforms the
MIRE with positional embedding for this image.

11. Experimental setup
Our numerical implementation utilized the PyTorch frame-
work and the Adam optimizer with a base learning rate
of 0.001, which decays by 0.1 after each training epoch.
Presented results were obtained using an MLP with three
hidden layers, each containing 300 hidden nodes, and ac-
tivation parameters drawn from either a uniform distribu-
tion with support between 0 and 1 or each activation’s
base configuration. For performance evaluation, we used
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index Measure (SSIM) for images, and Intersection over
Union (IoU) for occupancy fields.



Figure 21. Effect of positional embedding on MIRE: The first column displays images obtained under MIRE’s sequential training with
positional embedding, while the second column depicts results without using positional embedding. It is evident that for the first two
layers, MIRE with positional embedding scheme yields better results compared to the MIRE without positional embedding. However, upon
introducing the third layer, MIRE without positional embedding surpasses the MIRE with positional embedding for this image.
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