SINR: Sparsity Driven Compressed Implicit Neural Representations

Supplementary Material

S1. Overview

In this supplementary material, we provide the pseudo-code
for SINR, along with a detailed explanation of the activa-
tion function selection process for both the image represen-
tation and occupancy fields. Additionally, we present qual-
itative results for each configuration mentioned in the main
paper, allowing for a clearer understanding of the model’s
performance across different scenarios. Lastly, we include
guidelines for selecting the value of the hyperparameter s,
which plays a key role in optimizing the model’s perfor-
mance. These materials are intended to complement the
main text, offering further insights into the flexibility and
effectiveness of SINR.

S2. Pseudocode of SINR

The following algorithm provides the pseudocode for SINR

Algorithm 1 PseudoCode of SINR

1: Input: INR, Sparsity level, Dictionary size, Random
seed

2: Output: Compressed model parameters
. Initialization:

A« Sample a sensing matrix from N (0, I) using
the Random seed
5. for layer € {2,...,1} do
6: for node in layer do
7 w < node weights
8
9

A~ W

minimize ||x||; subjecttow = A x
: indices, values = find(x # 0)
10: end for

11: Store nodes’ non-zero indices and values
12: end for

S3. Selecting the activation function

The choice of activation function plays a key role in the per-
formance of an INR, as it is a critical factor in determining
its effectiveness. Most of the literature on INR-based com-
pression methods utilizes sinusoidal activations for signal
compression. However, this may not always be the most
effective activation function for all data modalities. There-
fore, in this study, we examined which activation function
works best for each data modality.

S3.1. For image representation

We randomly selected four images from the Kodak dataset
to evaluate the image representation capacity of each INR.

Fig. S1 presents the results alongside the ground truth data.
For this evaluation, each INR was configured with 300 hid-
den neurons. As shown in the results, SIREN[32] con-
sistently outperforms all other INRs. Thus, we selected
SIREN as the activation function for all image compression
tasks.

S3.2. For occupancy fields

For the occupancy volumes presented in the main paper,
specifically the Stanford Lucy and Thai statue, each occu-
pancy field was trained using different activation functions
prior to applying the compression mechanism described in
SINR. The performance of each activation was recorded
and is summarized in Tab. S 1. These experiments were con-
ducted with a hidden neuron count of 128. As shown by the
results, Gaussian activation significantly outperforms sinu-
soidal activation for occupancy volumes. Therefore, it was
selected as the default activation function for compressing
occupancy volumes.

Table S1. Occupancy Field Performance Comparison

Occupancy Field | SIREN | GAUSS | WIRE
Thai Statue 0.962 0.975 0.944
Lucy 0.968 0.979 0.965

S4. Choosing the value of s

In this section, we analyze the effect of s on the perfor-
mance of the INR across various hidden sizes. We vary the
hidden neuron size as 32, 64,96, 128,192 and 256. Hid-
den neuron size of 32 investigates the effect of s for a ’tiny
INR’ (Sec. 3.3.2). From Fig. S2 (a), we observe that for
s > 350, the performance of the compressed INR closely
matches that of the uncompressed INR (denoted by the
dotted red line). A similar pattern emerges for other hid-
den sizes (Fig. S2 (b)-(f)), where performance shows only
marginal improvement beyond a certain threshold of s. This
marginal increase typically occurs at an optimal value of s
where SINR achieves sufficient compression. Additionally,
we also present a plot in Fig. S2 (g), which describes the
variation of the optimal value of s with the number of hid-
den neurons. This plot enables the selection of the optimal
s value for a given hidden size without needing to fit the
INR across different values of s. Notably, the variation of
the optimal s with hidden size is nearly linear.



GAuss |

Figure S1. Image representation performances for different activation functions

SS5. Neural radiance fields encoding

Neural Radiance Fields (NeRF) can be considered a novel
view generator when it is trained with a sufficient number
of training views, along with their corresponding positions
and directions. Fundamentally, once trained, a NeRF is an
INR. Therefore, the information encoded in its weights for
generating novel views can be compressed into a dictionary.
Figure S3 presents the results obtained with the proposed
SINR. As shown, SINR achieves more than 50% com-
pression while maintaining the same PSNR. These results
further confirm the applicability of SINR for compressing
INRs across different data modalities. We used the ReLU-
PE activation for encoding NeRFs.

S6. Additional qualitative and quantitative re-
sults

In this section, we present the decoded results of SINR and
the baseline models for the network configurations C1, Cs,
and Cy. Additionally, we provide details on the network
depth and the number of hidden neurons for each configu-
ration. Fig. S4 presents the results of image compression
for INRs using two hidden layers with 32 neurons. Further,
Figs. S5 and S6 showcase results for image compression
with INRs using three hidden layers with 64 and 128 neu-
rons, respectively. Finally, Figs. S7 and S8 display results
for image compression with INRs using three hidden layers

with 96 and 128 neurons, respectively.

S7. Gigapixel image compression

In this section, we demonstrate that SINR can be used to
compress INRs for the task of gigapixel image compression.
Gigapixel image compression focuses on efficiently encod-
ing ultra-high-resolution images while preserving the visual
quality. We incorporated SINR into the state-of-the-art gi-
gapixel compression method, SHACIRA [11], and found
that it achieves a compression ratio of 66% with only a 0.3
dB drop in PSNR. This experiment was run on the image
in [40].

S8. Comparison with low-rank factorization

We performed low-rank factorization on W by using SVD.
We then express W = AB where A = UX¥ and B = V7
with ¥ denoting the matrix formed by selecting the top k
singular values from Y. We utilized an INR with 64 hid-
den neurons. In order to have the same number of param-
eters after compression as SINR, we chose k£ = 24 for the
low-rank factorization. The obtained average results on the
Kodak dataset is as follows. With low rank approximation:
11.62 dB, with SINR: 28.97 dB.
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Figure S2. Variation of PSNR (dB) with the sparsity level for different number of hidden neurons. The red dotted line indicates
uncompressed INR performance. The regression plot shows that the variation of the optimal value of s with hidden neuron size is nearly
linear.
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Figure S3. Results for NeRF compression: SINR compresses the radiance field without any loss in PSNR while significantly reducing
storage requirements.
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Figure S4. Image compression performance for configuration C; when there are two hidden layers, and 32 neurons: As can be seen
from the results, SINR obtains significant compression compared to competing methods.
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Figure S5. Image compression performance for configuration C's when there are three hidden layers, and 64 neurons: As can be seen
from the results, SINR obtains significant compression while preserving the same quantitaive metrics compared to competing methods.
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Figure S6. Image compression performance for configuration C's when there are three hidden layers, and 128 neurons: The results
indicate that SINR achieves notable compression without compromising the quantitative metrics when compared to the competing methods.
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Figure S7. Image compression performance for configuration C'; when there are three hidden layers, and 96 neurons: The results
show that SINR delivers significant compression without compromising quantitative measurements when compared to the competing
methods.
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Figure S8. Image compression performance for configuration C; when there are three hidden layers, and 128 neurons: The results
reveal that SINR provides significant compression without compromising quantitative measurements when compared to the competing
methods.
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