
Subnet-Aware Dynamic Supernet Training for Neural Architecture Search

- Supplementary Material

In the supplementary material, we provide detailed im-

plementation descriptions (Sec. A), and additional results,

including comparisons to the state-of-the-art methods, and

experiments conducted on additional NAS spaces (Sec. B).

We also present discussions on the ablation studies and the

design choices of our method (Sec. C). Furthermore, we ex-

plain extensions to various N-shot NAS methods with de-

tailed algorithmic explanations and pseudocode (Sec. D).

Lastly, we visualize the structures of the subnets searched

with our method (Sec. E).

A. Implementation details

MobileNet. We follow the standard approach [3, 7] for

supernet training, evolutionary search, and retraining the

retrieved subnet. For training supernet on ImageNet [4]

in the MobileNet space [1], we use the SGD optimizer

with a momentum coefficient of 0.9 and a weight decay

of 4e-5. The batch size and initial LR are set as 512 and

0.045, respectively. We apply our dynamic supernet train-

ing to three baselines, including SPOS [7], FairNAS [3],

and FSNAS [18], where they are trained for 150, 75, and

100 epochs, respectively. Note that FSNAS utilizes multi-

ple sub-supernets, and each sub-supernet is trained for 100

epochs. We set the maximum and minimum decay ratio of

CaLR as γmax = 1/γmin = γ′, and perform a grid search to

determine γ′ ∈ {2, 3, 4}, and we determine γ′ = 3 for all

baselines. For layer selection in MS, we choose the first one

of the searchable layers. We then perform the evolutionary

search for 20 epochs, with a population number of 50 to find

the best subnet. For retraining the retrieved subnets, we use

the same setting of [10, 12]. We use 4 A5000 GPUs for

training the supernet and 8 A5000 GPUs for retraining the

searched subnets.

NAS-Bench-201. We train the supernet with the SGD op-

timizer with a momentum coefficient of 0.9 and a weight

decay of 5e-4. The batch size and initial LR are set as

64 and 0.025, respectively. Our framework is applied on

SPOS [7], FairNAS [3], and FSNAS [18], where they are

trained for 250, 200, and 300 epochs, respectively. Similar

to the MobileNet space, we perform the grid search to de-

termine the maximum and minimum decay ratio of CaLR in

the same candidate, and we set γ′ = 4. We use a randomly

selected edge for subnet clustering in MS. We use a single

RTX 2080Ti for training the supernet.

Table A. Quantitative comparison of the search performance on

CIFAR-10 [9] in the NAS-Bench-201 space [6].

Methods Top-1 Acc.

DARTS [13] 86.23± 4.93
GDAS [5] 93.26± 0.32
NSAS [17] 92.23± 0.10
Cream [15] 92.83± 0.67
SUMNAS [8] 93.09± 0.12
PA&DA [14] 93.33± 0.22

SPOS [7] 93.12± 0.03
SPOS + Ours 93.50 ± 0.33

FairNAS [3] 92.13± 0.18
FairNAS + Ours 93.52 ± 0.50

FSNAS [18] 93.43± 0.24
FSNAS + Ours 93.63 ± 0.21

2 3 5 10 20
Search time (GPU hours)

92.25

92.50

92.75

93.00

93.25

93.50

93.75

To
p-

1
ac

cu
ra

cy
 (%

)

SPOS

SPOS+Ours

FairNAS

FairNAS+Ours

FSNAS

FSNAS+Ours

SUMNAS

PA&DA
GDAS

NSAS

Figure A. Visual comparison of the top-1 accuracy and search time

for the subnets retrieved from the NAS-Bench-201 space [6] for

CIFAR-10 [9].

Table B. Quantitative results of the top-1 accuracy on CIFAR-10

in the DARTS space.

Methods Top-1 Acc. (%)

SPOS 96.1

SPOS + Ours 96.3

B. More experiments

In this section, we provide a comparison to the state-of-the-

art NAS methods, and results on additional NAS spaces,

including DARTS [13] and Autoformer spaces [2].

1

Table C. Quantitative comparisons on ImageNet in the Autoformer

space. We report the top-1 validation accuracy, together with the

number of parameters limit and the number of parameters.

Methods # Params Limit # Params Top-1 Acc. (%)

Autoformer ≤6M 5.97M 74.5

Autoformer + Ours ≤6M 5.98M 74.8

Autoformer ≤7.5M 7.49M 76.0

Autoformer + Ours ≤7.5M 7.49M 76.3

Autoformer ≤9M 8.91M 76.5

Autoformer + Ours ≤9M 8.96M 76.7

B.1. Comparison to the state of the art

We present in Table A the quantitative comparison of our

method and state-of-the-art NAS methods for NAS [3, 5, 7,

8, 13±15, 17, 18] on CIFAR-10 [9] in the NAS-Bench-201

space [6]. We can see that our method outperforms state-

of-the-art methods in terms of top-1 accuracy. To further

validate the efficiency of our method, we compare in Fig. A

the search performance and retrieval time. We can observe

that ours provides better compromise between the search

performance and search time compared to other methods.

Moreover, our method can improve the performance of var-

ious NAS approaches, without a significant increase in the

search time. For example, applying a dynamic supernet

training to FairNAS [3] boosts the top-1 accuracy of the

searched subnets from 92.13% to 93.52%, with a negligible

additional time, demonstrating the efficiency of our method.

B.2. Results on additional spaces

To show that our method is generally applicable to various

NAS spaces, we provide other benchmark results, includ-

ing DARTS [13] and Autoformer spaces [2]. The DARTS

space is a cell-based search space, searching for normal and

reduction cells, each consisting of 14 edges and 7 candi-

date operations. We train a supernet with SPOS [7] and

SPOS with our dynamic supernet training on CIFAR-10.

We follow the setting of [11] for training a supernet and

searching subnets. Specifically, the supernet is trained for

50 epochs, and the most promising subnet is selected by

evaluating 1,000 subnets randomly chosen. We retrain the

searched subnet with 200 epochs.

The Autoformer space [2] is designed for building ViT

architectures, with search parameters including Q-K-V di-

mension, embedding dimension, number of heads, MLP ra-

tio, and network depth. We follow the experimental setting

of [2] for supernet training and subnet searching. We use the

Supernet-tiny of the Autoformer space as our supernet, and

train the supernet on ImageNet using the Autoformer algo-

rithm [2] with and without our approach. We then search

the subnets using an evolutionary algorithm with various

Table D. Quantitative comparisons of CB and C3 on CIFAR-10,

CIFAR-100 [9], and ImageNet16-120 [4] in the NAS-Bench-201

space [6].

Method
CIFAR-10 CIFAR-100 ImageNet16-120

CB C3 CB C3 CB C3

SPOS 0.76 -0.19 0.84 -0.25 0.81 -0.22

+CaLR 0.63 -0.09 0.7 -0.11 0.68 -0.1

FairNAS 0.72 -0.13 0.69 -0.16 0.73 -0.15

+CaLR 0.62 -0.06 0.6 -0.1 0.65 -0.08

FSNAS 0.79 -0.21 0.82 -0.24 0.8 -0.22

+CaLR 0.63 -0.1 0.66 -0.11 0.65 -0.05

constraints on the number of parameters. Note that the Aut-

oformer algorithm does not require a retraining step.

We show in Tables B and C quantitative comparisons of

baseline NAS methods with and without our approach. We

can see that our method can generally enhance these base-

lines in various search spaces. Note that these improve-

ments come from marginal overheads, demonstrating that

our method can be applied efficiently to various scenarios.

C. More Discussions

In this section, we provide additional discussions on the ab-

lation studies and the design choices of our method.

C.1. Ablations on CaLR and MS

To further validate the effectiveness of our method in vari-

ous NAS methods and datasets beyond Table 4 and Fig. 6

of the main paper, we show in Table D and Fig. B addi-

tional ablation studies of CaLR and MS, conducted on var-

ious methods (SPOS [7], FairNAS [3], and FSNAS [18])

and datasets (CIFAR-10, CIFAR-100 [9], and ImageNet16-

120 [4]) in the NAS-Bench-201 space [6]. We can see that

applying CaLR and MS alleviates the unfairness and noisy

momentum problems, respectively, across different meth-

ods and datasets, demonstrating the generalizability of our

method.

C.2. Variants of the design of decay ratio in CaLR

To compute the decay ratio γ(α) of a subnet α, we first feed

the complexity score C(α) of the subnet α into a logarithmic

function, followed by applying an affine transformation to

log(C(α)) (see Eq. (4)). We consider the different design

options for γ(α). To this end, we first reformulate Eq. (4)

as follows:

γ(α) = ωg(C(α)) + τ, (i)

0 100 200 300

0.001

0.002

0.003

0.004
SPOS
SPOS + MS
FairNAS
FairNAS + MS
FSNAS
FSNAS + MS

(a) CIFAR-10

0 100 200 300

0.002

0.004

0.006

0.008

(b) CIFAR-100

0 100 200 300

0.002

0.004

0.006

(c) ImageNet16-120

Figure B. Plots of standard deviations for gradients of the supernet on CIFAR-10, CIFAR-100 [9], and ImageNet16-120 [4] in the NAS-

Bench-201 space [6].

Table E. Quantitative results of the ranking consistency on CIFAR-

10 [9] in the NAS-Bench-201 space [6] with different choices of

g(x).

Baselines CaLR MS g(x) Kendall’s Tau

SPOS

- ✓ - 0.772± 0.007
✓ ✓ ex 0.774± 0.018
✓ ✓ x 0.783± 0.013
✓ ✓ log(x) 0.814 ± 0.007

FairNAS

- ✓ - 0.784± 0.007
✓ ✓ ex 0.794± 0.016
✓ ✓ x 0.813± 0.011
✓ ✓ log(x) 0.828 ± 0.020

FSNAS

- ✓ - 0.750± 0.024
✓ ✓ ex 0.755± 0.015
✓ ✓ x 0.763± 0.013
✓ ✓ log(x) 0.767 ± 0.010

min max
(α)

γmin

1.0

γmax

γ(
α)

g(x) = ex

g(x) = x
g(x) = log(x)

Figure C. Visualization of the decay ratio γ(α) based on the com-

plexity score C(α) with different choices of g(x).

where ω and τ are coefficients for the affine transformation:

ω = −
γmax − γmin

g(Cmax)− g(Cmin)
, (ii)

τ = γmin − ωg(Cmax). (iii)

We show in Table E the results of the ranking consistency

on CIFAR-10 [9] in the NAS-Bench-201 space [6] with

different functions for g(x), including exponential ex, lin-

ear x, and logarithmic log(x). From the results, we ob-

serve that g(x) = log(x) outperforms other options. Note

that g(x) determines the degree of the differentiation of

the decay ratio γ(α) for the subnets with different com-

plexities. The logarithmic function allows the subnet with

a complexity score close to the medium (around the cen-

Table F. Quantitative results of the ranking consistency on CIFAR-

10 [9] in the NAS-Bench-201 space [6] with different choices of

metrics for complexity. C(α) denotes the complexity score of a

subnet α.

Baselines CaLR MS C(α) Kendall’s Tau

SPOS

- - - 0.751± 0.008
✓ ✓ Params 0.814 ± 0.007
✓ ✓ FLOPs 0.783± 0.015

FairNAS

- - - 0.766± 0.015
✓ ✓ Params 0.828 ± 0.020
✓ ✓ FLOPs 0.812± 0.017

FSNAS

- - - 0.729± 0.019
✓ ✓ Params 0.767 ± 0.010
✓ ✓ FLOPs 0.756± 0.010

ter point between Cmin and Cmax) to have a linear decay-

ing LR, i.e., the decay ratio γ(α) of 1 (Fig. C). This en-

sures LR of the high-complexity subnets to be slowly de-

cayed (i.e., γmin < γ(α) < 1), while decaying it faster

for low-complexity ones (i.e., 1 < γ(α) < γmax). This

suggests that designing g(x) in a logarithmic function is ef-

fective in terms of differentiating the LR decay for various

subnets. Other options, such as x, and ex, fail to differenti-

ate LR decay for varying complexities of subnets (Fig. C),

since they do not satisfy the aforementioned criteria, result-

ing in an inferior performance. For these reasons, we adopt

g(x) = log(x) for computing the decay ratio γ(α).

C.3. Metrics for complexity

We show in Table F the results of the ranking consistency

on CIFAR-10 [9] in the NAS-Bench-201 space [6] with dif-

ferent metrics for complexity. We consider the number of

parameters (Params), and FLOPs as metrics for complexity.

We observe that using the number of parameters achieves

slightly better performance than FLOPs. Moreover, since

the number of parameters is a more straightforward to com-

pute than FLOPs, which requires a forward pass, we adopt

the number of parameters as a metric for complexity in our

framework.

Table G. Quantitative comparison of Kendall’s Tau on CIFAR-

10 in the NAS-Bench-201 space using different subnet sam-

pling strategies and LR schedulers for supernet training. The

subnet sampling strategies include uniform sampling and sam-

pling proportional to the number of parameters (#Params). The

LR schedulers include the Cosine Annealing Scheduler (CS) and

Complexity-aware LR scheduler (CaLR). The momentum separa-

tion technique (MS) is used as a default for all methods. We report

the average and standard deviations for 3 runs.

Baselines Subnet Sampling
Scheduler

(Supernet Training)
Kendall’s Tau

SPOS [7] Uniform CS 0.772 ± 0.007

SPOS [7] #Params CS 0.784 ± 0.012

SPOS [7] Uniform CaLR 0.814 ± 0.007

FairNAS [3] Uniform CS 0.784 ± 0.007

FairNAS [3] #Params CS 0.811 ± 0.013

FairNAS [3] Uniform CaLR 0.828 ± 0.020

FSNAS [18] Uniform CS 0.750 ± 0.024

FSNAS [18] #Params CS 0.761 ± 0.011

FSNAS [18] Uniform CaLR 0.767 ± 0.010

C.4. Using non-uniform sampling method in super-
net training

CaLR is designed to address the unfairness problem in su-

pernet training by adjusting the LR based on the complex-

ity of each subnet. One possible alternative to address the

unfairness problem is to adjust the sampling probabilities

of subnets based on their complexities. To compare these

two approaches, we show in Table G the results of using

non-uniform sampling strategy, which samples the subnets

with probabilities proportional to their complexities, instead

of using CaLR in supernet training. We can see that ad-

justing the sampling probabilities improves the baselines,

but shows inferior results compared to CaLR. Adjusting the

sampling probabilities can cause a part of subnets to be sam-

pled frequently while others are neglected, suggesting that

large numbers of subnets would not be trained. In con-

trast, our CaLR maintains uniform sampling probabilities

for all subnets but adjusts the LR based on the complexity

of each subnet. This approach helps to balance the train-

ing across different subnets more effectively, ensuring that

a wider range of subnets receive sufficient training.

C.5. Using CaLR in the retraining stage

Once we train a supernet with CaLR, and search the subnets

from the trained supernet, we retrain the searched subnets

with a standard scheduler (i.e., cosine scheduler). To in-

vestigate the impact of using CaLR during retraining phase,

we compare in Table H quantitative results between using

CaLR and a standard scheduler in the retraining phase. We

can see that using CaLR during a retraining stage does not

improve performance compared to using a regular sched-

uler. The primary reason is that retraining aims to optimize

Table H. Quantitative results of top-1 accuracies of the searched

subnets on CIFAR-10 in the NAS-Bench-201 space using differ-

ent schedulers for the retraining stage. The schedulers include

the Cosine Annealing Scheduler (CS) and Complexity-aware LR

scheduler (CaLR). For supernet training, we use consistent set-

tings, applying CaLR and MS to baselines. We report the average

and standard deviations for 3 runs.

Baselines
Scheduler

(Retraining)
Top-1 Acc.

SPOS [7] CS 93.50 ± 0.33

SPOS [7] CaLR 90.51 ± 0.48

FairNAS [3] CS 93.52 ± 0.50

FairNAS [3] CaLR 90.75 ± 0.27

FSNAS [18] CS 93.63 ± 0.21

FSNAS [18] CaLR 90.24± 0.47

a single subnet, and the cosine annealing scheduler is effec-

tive for this purpose, as it gradually lowers the LR, allow-

ing the model to converge smoothly to a local minimum.

In contrast, CaLR adjusts LRs based on the complexities

of subnets, e.g., keeping high LR for high-complexity sub-

nets, which is effective for supernet training to address the

unfairness problem, but not optimal for retraining a single

subnet.

To explain in more detail, our CaLR method is specifi-

cally designed to address the challenges of supernet train-

ing, where the main difficulty stems from the vast number

of subnets within the search space (e.g., ∼ 721 for the Mo-

bileNet space). In this scenario, fully training each sub-

net to convergence within a limited number of iterations

is impractical. Instead of extending the training iterations

across all subnets, CaLR adjusts the LR dynamically based

on the complexity of each subnet. This approach ensures

that higher-complexity subnets, which have more parame-

ters to optimize, receive relatively more training amounts

compared to lower-complexity subnets. By doing so, CaLR

balances the training process by giving more attention to

subnets that need it due to their inherent complexity, allevi-

ating the unfairness problem in supernet training.

In contrast, the retraining phase operates under differ-

ent conditions where each subnet can be trained to full con-

vergence. Applying CaLR during retraining may lead to

suboptimal performance: maintaining a high LR for high-

complexity subnets could result in overshooting, which

hampers convergence, while a rapidly decaying LR for low-

complexity subnets might require more iterations to achieve

convergence. Hence, while CaLR is effective for super-

net training, it may not be suitable for the retraining phase

where a gradual LR decay, like the cosine annealing sched-

uler, is more appropriate.

𝑨𝟎

𝑨𝟑

𝑨𝟏

𝑨𝟓
: Zero

: Skip Connect

: 1 × 1 Conv.

: 3 × 3 Conv.

: 3 × 3 Avg. Pool

: Node０

２

１ ３

０

２

１ ３

０

２

３１

０

２

１ ３

Figure D. Visualization of the cell architectures of the generated

subnets.

Table I. Quantitative results of mean gradient cosine similarity

(MGCS) with respect to A0 on CIFAR-10 in NAS-Bench-201.

Subnet MGSC

A1 0.6

A3 0.27

A5 0.09

C.6. Relationship between structural similarity and
gradient consistency

We have shown that our MS, which clusters subnets based

on their structural similarities, provides better results in

terms of gradient consistencies, compared to the base-

line NAS methods and a random clustering approach, in

Fig. 2(c) and Fig. 6 of the main paper. This demonstrates

that subnets with similar structures tend to make more con-

sistent gradients.

To further validate the statement, we perform a quanti-

tative evaluation by computing cosine similarities between

gradients, while varying network structures in terms of

structural similarities in NAS-Bench-201. Specifically, we

select the base subnet A0. We then randomly change the

operations of n edges. By setting n as 1, 3, and 5, the gen-

erated subnets are shown in Fig. D. Note that A1 is the most

similar network for A0 in terms of the structural similarity,

while A5 is the most distinct one.

The supernet, consisting of subnets A0, A1, A3, and A5,

is trained using the accumulated gradients from all subnets

at each iteration. During the last epoch of training, we com-

pute the cosine similarities between gradients of the first

layer of the subnets for every iteration. Specifically, we

compute the similarities between the base network A0 and

An, n = 1, 3, 5, i.e., cos(g(A0), g(An)), where cos() and

g(An) represent the cosine similarities and the gradients of

the first layer of subnet An, respectively. We then report

the mean gradient cosine similarities (MGCS), by averaging

cos(g(A0), g(An)) for all iterations. We show in Table I the

results of MGSC. We can observe that subnets with higher

structural similarities to A0 show higher MGCS, suggesting

that subnets with similar structures tend to generate similar

Table J. Quantitative results of the ranking consistency on CIFAR-

10 [9] in the NAS-Bench-201 space [6]. We compare our frame-

work with different momentum settings.

Baselines MS β Kendall’s Tau

SPOS

- 0 0.615± 0.046
- 0.9 0.751± 0.008
✓ 0.9 0.772 ± 0.007

FairNAS

- 0 0.743± 0.022
- 0.9 0.766± 0.015
✓ 0.9 0.784 ± 0.007

FSNAS

- 0 0.616± 0.016
- 0.9 0.729± 0.019
✓ 0.9 0.750 ± 0.024

Table K. Quantitative results of the ranking consistency on

CIFAR-10 [9] in the NAS-Bench-201 space [6] with different γ′.

Baseline CaLR MS γ′ Kendall’s Tau

SPOS

- - - 0.751± 0.008
✓ ✓ 2 0.787± 0.001
✓ ✓ 3 0.797± 0.010
✓ ✓ 4 0.814 ± 0.007

gradients.

C.7. Impact of excluding momentum in supernet
training

We have shown that sharing a single optimizer for all sub-

nets makes momentum updates noisy. The natural question

is that what the impact of excluding momentum in super-

net training (i.e., β = 0 in Eq. (8)) would be. To this end,

we compare the performance of the baselines under three

different conditions: without momentum (β = 0), with mo-

mentum (β = 0.9), and with MS in Table J. We observe

that the baseline without momentum achieves inferior per-

formance compared to the baseline with momentum. This

indicates that despite the noisy nature of momentum up-

dates in supernets, momentum still plays a crucial role in

stabilizing the optimization process. Utilizing MS with mo-

mentum, however, can achieve better performance, since it

can reduce the noise in momentum updates by clustering

the subnets with similar structural characteristics. We also

observe that the performance degradation of FairNAS [3]

without momentum is smaller than that of SPOS [7] and

FSNAS [18]. The reason for this is the design of FairNAS,

which involves the use of multiple subnets in each itera-

tion. The process of averaging the gradients from these sub-

nets effectively mimics the smoothing effect of momentum,

thereby mitigating the impact of its absence and resulting in

a smaller performance drop for FairNAS without momen-

tum.

Table L. Quantitative results of the search performance on Ima-

geNet [4] in the MobileNet space [1] with different γ′.

Baseline CaLR MS γ′ Top-1 (%)

SPOS-S

- - - 74.3
✓ ✓ 2 74.4
✓ ✓ 3 74.6

✓ ✓ 4 74.5

C.8. Hyperparameter search

We show in Tables K and L the results of the hyperpa-

rameter search on NAS-Bench-201 [6] and MobileNet [1]

spaces1, respectively. Our framework has two hyperparam-

eters, including the maximum and minimum decay ratio

of CaLR, γmax and γmin, respectively, and we set γmax =
1/γmin = γ′ for simplicity. We perform the grid search

to determine the maximum and minimum decay ratio of

CaLR; γ′ ∈ {2, 3, 4}. From the results, we observe that

our framework achieves the best performance when γ′ = 4
and 3 for NAS-Bench-201 and MobileNet spaces, respec-

tively. This variation in optimal hyperparameter settings

can be attributed to the differences in the distribution of the

number of parameters among subnets across these search

spaces. Furthermore, our framework consistently outper-

forms the baselines across various hyperparameter config-

urations, demonstrating its robustness and adaptability to

different hyperparameter choices.

C.9. Layer selection in MS

We show in Table M an ablation study on layer selection

for MS in the MobileNet space. We compare two cases for

selecting a layer in MS (the first layer and the last layer).

We observe that choosing the first layer achieves superior

performance compared to selecting the last layer. We at-

tribute this to the distinct characteristics of the layers in the

subnets. As suggested in [16], the feature distributions of

each layer highly affect the gradient flow in the subnet. The

features in the deeper layers are likely to be more diverse

across the subnets, due to the cumulative effect of opera-

tion choices made in all preceding layers. This diversity in

feature distributions leads to more inconsistent gradients.

Therefore, selecting the deep layer for MS may not sig-

nificantly contribute to the stabilization of momentum up-

dates. In contrast, sharing the same operation in the shal-

lower layer results in more consistent feature distributions

across the subnets, due to the property of the shallow layers

that learn more general features such as edges and textures.

Selecting the first layer for MS thus results in more consis-

tent gradients within the cluster than selecting the deeper

layers, which can stabilize the momentum updates.

1We retrain the searched subnet in MobileNet space for 240 epochs

when searching hyperparameters, for efficiency.

Table M. Quantitative results of the search performance on Ima-

geNet [4] in the MobileNet space [1]. We compare the layer se-

lection strategy in MS. We report the top-1 validation accuracy of

the searched subnets.

Baseline CaLR MS Layer selection Top-1 (%)

SPOS-S

- - - 74.6

✓ ✓ First layer 74.8

✓ ✓ Last layer 74.7

D. Extensions to various N-shot NAS methods

We provide overall processes of applying our framework on

various NAS methods, including SPOS [7], FairNAS [3],

and FSNAS [18] in Algorithms 1, 2, and 3, respectively.

In the following, we detail the extensions to various NAS

methods other than SPOS.

FairNAS. For FairNAS, we sample multiple subnets at

each iteration, and compute the gradients of each subnet.

We then update the parameters through a weighted sum of

the gradients, where the weights assigned to each gradient

are determined based on the corresponding subnet using

Eq. (4) of the main paper. This approach ensures that the

influence of each subnet’s gradient on the overall update is

proportional to their complexities. Additionally, to facili-

tate the update of momentum with the accumulated gradi-

ents, we sample the subnets from the same cluster at each

iteration.

FSNAS. FSNAS utilizes multiple sub-supernets parti-

tioned from a supernet. We apply SPOS [7] with our dy-

namic supernet training framework to optimize each sub-

supernet. Unlike SPOS and FairNAS, FSNAS retrains the

retrieved subnet of each sub-supernet and selects the best

subnet among them.

E. Subnets

For reproducibility, we provide in Figs. E, F, and G

the searched subnets on ImageNet [4] in the MobileNet

space [1] using SPOS [7] + Ours, FairNAS [3] + Ours,

and FSNAS [18] + Ours as search algorithms, respectively.

Note that MBx k× k represents a MobileNet block with an

expansion ratio of x and a kernel size of k×k. The numbers

over the blocks denote the number of output channels.

Algorithm 1 Dynamic supernet training on SPOS [7]

1: Input: SupernetN , weights of supernetW , momentum of supernet µ, training set Dtrain, total number of iterations T .

2: Initialize each cluster’s momentum: µ0 = 0.

3: for t = 1 to T do

4: Sample a mini-batch from training set Dtrain.

5: Randomly sample a subnet α from a supernet N .

6: Compute LR ηt of current iteration t, considering a complexity score of the subnet C(α) using Eq. (3).

7: Obtain momentum µi from cluster i where subnet α is located using Eq. (7).

8: Compute gradients gt of the subnet α w.r.t. train loss.

9: Update momentum: µt

i
= β · µt−1

i
+ gt, where β is a coefficient of moving average.

10: Update weights: Wt(α) =Wt−1(α)− ηt · µt

i
.

11: end for

Algorithm 2 Dynamic supernet training on FairNAS [3]

1: Input: Supernet N , weights of supernet W , momentum of supernet µ, set of clusters S, supernet depth L, number of

candidate operations n, training set Dtrain, total number of iterations T .

2: Initialize each cluster’s momentum: µ0 = 0.

3: for t = 1 to T do

4: Sample a mini-batch from training set Dtrain.

5: Randomly select a cluster Si from the set of clusters S.

6: for l = 1 to L do

7: cl = a uniform permutation of index for n candidate operations of layer l.
8: end for

9: Initialize gradients: gt = 0.

10: for k = 1 to n do

11: cek = i, where e is a selected layer for MS. // To ensure that the sampled subnets are within the cluster.

12: Sample a subnet αk = (c1k , c2k , · · · , cLk
).

13: Compute ηt
k

of current iteration t, considering a complexity score of the subnet C(αk) using Eq. (3).

14: Compute gradients gt
k

of the subnet αk w.r.t train loss.

15: Accumulate gradients: gt ← gt + gt
k
· ηt

k
.

16: end for

17: Update momentum: µt

i
= β · µt−1

i
+ gt, where β is a coefficient of moving average.

18: Update weights: Wt(α) =Wt−1(α)− µt

i
.

19: end for

Algorithm 3 Dynamic supernet training on FSNAS [18]

1: Input: SupernetN , weights of supernetW , momentum of supernet µ, training set Dtrain, total number of iterations T .

2: Randomly split supernet N into K sub-supernets: {N1,N2, · · · ,NK}.
3: for k = 1 to K do

4: Initialize each cluster’s momentum within a sub-supernet Nk: µ0

k
= 0.

5: for t = 1 to T do

6: Sample a mini-batch from training set Dtrain.

7: Randomly sample a subnet α from a supernet Nk.

8: Compute LR ηt of current iteration t, considering a complexity score of the subnet C(α) using Eq. (3).

9: Obtain momentum µki
from cluster ki where α is located using Eq. (7).

10: Compute gradients gt of the subnet α w.r.t train loss.

11: Update momentum: µt

ki
= β · µt−1

ki
+ gt, where β is a coefficient of moving average.

12: Update weights: Wt

k
(α) =Wt−1

k
(α)− ηt · µt

ki
.

13: end for

14: end for

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

3
 5

X
5

M
B

3
 5

X
5

M
B

3
 3

X
3

M
B

3
 7

X
7

M
B

6
 7

X
7

M
B

3
 3

X
3

M
B

3
 3

X
3

M
B

3
 3

X
3

M
B

3
 7

X
7

M
B

3
 5

X
5

M
B

3
 7

X
7

M
B

3
 5

X
5

Id
e
n
ti
ty

M
B

6
 7

x
7

M
B

3
 7

x
7

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

3
 5

X
5

M
B

6
 5

X
5

M
B

3
 3

X
3

C=32

40

16

24 80 96 192 320

(a) SPOS-S + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

6
 5

x
5

M
B

3
 3

X
3

M
B

3
 7

x
7

Id
e
n
ti
ty

M
B

6
 7

x
7

M
B

3
 3

X
3

M
B

3
 5

x
5

M
B

6
 3

X
3

M
B

6
 5

x
5

Id
e
n
ti
ty

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

3
 3

X
3

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

C=32

40

16

24 80 96 192 320

(b) SPOS-M + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

6
 3

X
3

M
B

3
 5

x
5

M
B

6
 3

X
3

M
B

3
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

3
 3

X
3

M
B

6
 7

x
7

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

3
 3

X
3

M
B

6
 7

x
7

M
B

6
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 7

x
7

M
B

6
 3

X
3

4024 80 96 192 320

C=32 16

(c) SPOS-L + Ours.

Figure E. Visualizations of our searched subnets on ImageNet [4] in the MobileNet space [1] using SPOS [7] + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

3
 7

x
7

Id
e
n
ti
ty

M
B

3
 3

X
3

M
B

3
 5

x
5

M
B

3
 5

x
5

Id
e
n
ti
ty

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

3
 3

X
3

M
B

6
 5

x
5

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

3
 7

x
7

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 7

x
7

4024 80 96 192 320

C=32 16

(a) FairNAS-S + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 5

x
5

M
B

6
 5

x
5

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

3
 7

x
7

Id
e
n
ti
ty

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

Id
e
n
ti
ty

M
B

6
 7

x
7

M
B

6
 3

X
3

4024 80 96 192 320

C=32 16

(b) FairNAS-M + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

6
 3

X
3

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 5

x
5

M
B

6
 5

x
5

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

6
 3

X
3

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

4024 80 96 192 320

C=32 16

(c) FairNAS-L + Ours.

Figure F. Visualizations of our searched subnets on ImageNet [4] in the MobileNet space [1] using FairNAS [3] + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

3
 3

X
3

M
B

3
 3

X
3

M
B

3
 5

x
5

M
B

3
 5

x
5

M
B

6
 3

X
3

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

6
 7

x
7

Id
e
n
ti
ty

M
B

3
 7

x
7

M
B

6
 3

X
3

4024 80 96 192 320

C=32 16

(a) FSNAS-S + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

3
 7

x
7

M
B

3
 5

x
5

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

3
 3

X
3

M
B

6
 3

X
3

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

3
 3

X
3

M
B

6
 3

X
3

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

3
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

6
 7

x
7

M
B

3
 3

X
3

M
B

3
 7

x
7

M
B

6
 7

x
7

4024 80 96 192 320

C=32 16

(b) FSNAS-M + Ours.

C
o
n
v
 3

X
3

M
B

1
 3

X
3

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 3

X
3

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

6
 3

X
3

M
B

3
 5

x
5

M
B

6
 5

x
5

M
B

6
 3

X
3

M
B

3
 3

X
3

M
B

6
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

6
 5

x
5

M
B

6
 7

x
7

M
B

3
 5

x
5

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

6
 3

X
3

M
B

6
 7

x
7

M
B

3
 5

x
5

4024 80 96 192 320

C=32 16

(c) FSNAS-L + Ours.

Figure G. Visualizations of our searched subnets on ImageNet [4] in the MobileNet space [1] using FSNAS [18] + Ours.

References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 1, 6, 8, 9

[2] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin

Ling. Autoformer: Searching transformers for visual recog-

nition. In ICCV, 2021. 1, 2

[3] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. FairNAS: Re-

thinking evaluation fairness of weight sharing neural archi-

tecture search. In ICCV, 2021. 1, 2, 4, 5, 6, 7, 8

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009. 1, 2, 3, 6, 8, 9

[5] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. In CVPR, 2019. 1, 2

[6] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the

scope of reproducible neural architecture search. In ICLR,

2020. 1, 2, 3, 5, 6

[7] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. In ECCV,

2020. 1, 2, 4, 5, 6, 7, 8

[8] Hyeonmin Ha, Ji-Hoon Kim, Semin Park, and Byung-Gon

Chun. SUMNAS: Supernet with unbiased meta-features for

neural architecture search. In ICLR, 2022. 1, 2

[9] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 1, 2, 3, 5

[10] Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu

Marculescu. ZICO: Zero-shot NAS via inverse coefficient of

variation on gradients. In ICLR, 2023. 1

[11] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In UAI, 2020. 2

[12] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu

Sun, Qi Qian, Hao Li, and Rong Jin. Zen-NAS: A zero-

shot NAS for high-performance image recognition. In ICCV,

2021. 1

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In ICLR, 2019. 1, 2

[14] Shun Lu, Yu Hu, Longxing Yang, Zihao Sun, Jilin Mei, Jian-

chao Tan, and Chengru Song. PA&DA: Jointly sampling

path and data for consistent NAS. In CVPR, 2023. 1

[15] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and

Jianlong Fu. Cream of the Crop: Distilling prioritized paths

for one-shot neural architecture search. In NeurIPS, 2020. 1,

2

[16] Jiefeng Peng, Jiqi Zhang, Changlin Li, Guangrun Wang, Xi-

aodan Liang, and Liang Lin. Pi-NAS: Improving neural ar-

chitecture search by reducing supernet training consistency

shift. In ICCV, 2021. 6

[17] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and

Steven Su. Overcoming multi-model forgetting in one-shot

NAS with diversity maximization. In CVPR, 2020. 1, 2

[18] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fon-

seca, and Tian Guo. Few-shot neural architecture search. In

ICML, 2021. 1, 2, 4, 5, 6, 7, 9

	Implementation details
	More experiments
	Comparison to the state of the art
	Results on additional spaces

	More Discussions
	Ablations on CaLR and MS
	Variants of the design of decay ratio in CaLR
	Metrics for complexity
	Using non-uniform sampling method in supernet training
	Using CaLR in the retraining stage
	Relationship between structural similarity and gradient consistency
	Impact of excluding momentum in supernet training
	Hyperparameter search
	Layer selection in MS

	Extensions to various N-shot NAS methods
	Subnets

