LC-Mamba: Local and Continuous Mamba with Shifted Windows
for Frame Interpolation

Supplementary Material

A. Appendix
A.1. Additional Details on Ablation Studies
Tables 6 and 7 present the PSNR/SSIM and

LPIPS/FIoLPIPS metrics, respectively, illustrating the
impact of window size and the use of shifted windows on
the performance of Hilbert curve-based scanning in our
Ours-B model. The settings vary in window sizes of 4, 8,
and 16, with and without shifted windows.

We observe that a window size of 8 provides balanced
performance across both low and high resolutions. Specif-
ically, on low-resolution datasets like Vimeo90K, omit-
ting shifted windows slightly improved performance. For
instance, using a window size of 8 without shifted win-
dows yields a PSNR/SSIM of 36.45/0.9813, compared to
36.43/0.9813 with shifted windows. Conversely, at 4K res-
olution (Xiph-4K dataset), including shifted windows en-
hances global information extraction, resulting in better per-
formance (PSNR/SSIM of 34.26/0.9046 with shifted win-
dows versus 34.15/0.9042 without).

When the window size is increased to 16, the model
effectively captures global features even without shifted
windows, maintaining or slightly improving performance
levels. For example, with a window size of 16 without
shifted windows, the PSNR/SSIM on the Xiph-4K dataset
is 34.23/0.9045, comparable to smaller window sizes with
shifted windows.

Table 6. Ablation studies for window settings. The “Settings” col-
umn shows window size and whether shifting is used, while the
other columns display performance (PSNR/SSIM).

Settings Vimeo90K Xiph-2K Xiph-4K SNU-FILM (avg.)
4 wl shift 36.45/0.9813  36.98/0.9455  34.26/0.9052 33.08/0.9431
4 w/o shift 3644709813  36.90/0.9452  34.23/0.9046 33.05/0.9430
8 w/ shift 36.43/0.9813  36.90/0.9452  34.26/0.9046 33.02/0.9429
8 w/o shift 36.45/0.9813 36.78/0.9448 34.15/0.9042 32.96/0.9428
16 w/ shift 36.44/0.9813  36.88/0.9454  34.15/0.9047 33.0170.9429

16 w/o shift ~ 36.46/0.9813  36.88/0.9449  34.23/0.9045 33.05/0.9429

Table 7 shows the perceptual metrics (LPIPS/FloLPIPS),
which further confirm these observations. Larger window
sizes cover wider areas, enhancing the integration of spa-
tiotemporal information; however, excessively large win-
dows may have limitations in capturing fine motion details,
as indicated by slightly higher LPIPS values.

Overall, a window size of 8 strikes a good balance be-
tween capturing global and local information. The inclu-
sion of shifted windows is more beneficial at higher resolu-
tions, enhancing global information extraction. These find-
ings demonstrate the importance of selecting appropriate

window sizes and configurations to optimize performance
across different resolutions.

Table 7. Ablation studies for window settings. The “Settings” col-
umn shows window size and whether shifting is used, while the
other columns display performance (LPIPS/FloLPIPS).

Settings Vimeo90K Xiph-2K Xiph-4K SNU-FILM (avg.)
4 wi shift 0.0208/0.0380  0.1060/0.1388  0.2323/0.2631 0.0607 / 0.0984
4 wio shift 0.0207/0.0381  0.1058/0.1386  0.2314/0.2623 0.0605 / 0.0982
8 w/ shift 0.0208/0.0380  0.1056/0.1378  0.2316/0.2609 0.0612/0.0997
8 w/o shift 0.0210/0.0384  0.1059/0.1381  0.2332/0.2638 0.0611/0.0993
16 w/ shift 0.0211/0.0388  0.1061/0.1391  0.2339/0.2635 0.0621/0.1005
16 w/o shift ~ 0.0208 /0.0381 0.1057/0.1378  0.2322/0.2632 0.0605 / 0.0988

B. Evaluating Temporal Consistency in Local
and Global Frame Interpolation

We compare our LC-Mamba model against recent state-of-
the-art video frame interpolation methods, including CNN-
based approaches [1, 6, 11, 15, 32], Transformer-based
models [19, 26, 46], and Mamba-based approaches [47],
across multiple benchmark datasets.

As shown in Table 8, our method effectively handles
both local and global motions by varying the frame interval
(1-3) on the Vimeo90K dataset as part of a multi-resolution
training strategy. Consequently, it achieves superior per-
formance on both low- and high-resolution datasets with-
out increasing model complexity, highlighting its efficiency
and effectiveness. Furthermore, we categorize our model
into three sizes—Compact (C), Efficient (E), and Balance
(B)—by varying Ni, No, and channels. C and E use 16
channels (Ny = Ny = 2 for C; Ny = Ny = 4 for E),
while B uses 32 channels with Ny = Ny = 2. All variants
use a fixed window size of 8 with window shifting.

C. Additional Visual Results

Figures 6, 7, and 8 illustrate that our window-based hier-
archical architecture and Hilbert curve-based scanning ef-
fectively maintain temporal consistency, generating visu-
ally compelling results for videos exhibiting both local and
global motions. By simultaneously modeling detailed local
motion and overall global scene dynamics, our method syn-
thesizes stable, realistic video sequences.

Additional qualitative comparisons with state-of-the-art
methods (VFIFormer [26], EMA [46], SGM-VFI [19], VFI-
Mamba [47]) are shown in Figures 9 and 10. These results
demonstrate that our method effectively synthesizes both
fine, small-scale and large motions.



Table 8. Additional quantitative comparison across benchmarks (IE for Middlebury; PSNR/SSIM for Vimeo90K, UCF101, Xiph, and SNU-
FILM). The best and second-best results are highlighted in bold and underlined, respectively. “Out of Memory” is denoted as “OOM,” and
“1” indicates our own test results; other results are cited from [11, 14, 15, 26, 35, 46]. Evaluation procedures followed those of [14] for
Vimeo90K, UCF101, and Middlebury, [30] for Xiph, and [15] for SNU-FILM, with Test-Time Augmentation (TTA) disabled.

Xiph SNU-FILM

Method Vimeo90K UCF101 K K M.B. Fasy Mediom Tard Extreme Params (M)
ToFlow [1] 33.73/0.9682 34.58/0.9667 33.93/0.922 30.74/0.856 2.15 39.08/0.9890 34.39/0.9740 28.44/0.9180 23.39/0.8310 1.4
IFRNet [15] 35.80/0.9794 35.29/0.9693 36.00/0.936 33.99/0.893 1.95 40.03/0.9905 35.94/0.9793 30.41/0.9358 25.05/0.8587 5
M2M [11] 35.47/0.9778 35.28/0.9694 36.44/0.943 33.92/0.899 2.09 39.66/0.9904 35.74/0.9794 30.30/0.9360 25.08/0.8604 7.6
SoftSplat [30] 36.10/0.9802 35.39/0.9697 36.62/0.944 33.60/0.901 1.81 39.88/0.9897 35.68/0.9772 30.19/0.9312 24.83/0.8500 71
RIFE [14] 35.61/0.9779 35.28/0.969 36.19/0.938 33.76/0.894 1.96 39.80/0.9903 35.76/0.9787 30.36/0.9351 25.27/0.8601 9.8
BMBC [31] 35.01/0.9764 35.15/0.9689 32.82/0.928 31.19/0.880 2.04 39.90/0.9902 35.31/0.9774 29.33/0.9270 23.92/0.8432 11.1
EMA-S [46] 36.07/0.97941  35.34/0.9696%  36.54/0.942%  34.24/0.902% 1.94%  39.81/0.9903F  35.88/0.9792%  30.68/0.9371%  25.47/0.8627+ 14.5
VFIMamba-S [47] 36.09/0.98001  35.35/0.9696%  36.71/0.942%  34.26/0.902% 1.97%  40.21/0.9912+  36.17/0.98021  30.80/0.9382F  25.59/0.86551 16.8
VFIFormer-S [26] 36.37/0.98101  35.36/0.9698+  36.55/0.943%  33.37/0.899% 1.89%  40.02/0.9906F  35.91/0.97931  30.22/0.9348%  24.80/0.8568+ 17.1
ABME [32] 36.18/0.9805 35.38/0.9698 36.53/0.944 33.73/0.901 2.01 39.59/0.9901 35.77/0.9789 30.58/0.9364 25.42/0.8639 18.1
SGM-VFI-S-1/2[19] ~ 35.81/0.9785%  35.33/0.9692%  36.06/0.940%  33.26/0.897+ 1.87%  40.36/0.9900F  36.12/0.97871  30.62/0.9351F  25.38/0.86151 20.8
SepConv [5] 33.79/0.9702 34.78/0.9669 34.77/0.929 32.06/0.880 227 39.41/0.9900 34.97/0.9762 29.36/0.9253 24.31/0.8448 217
AdaCoF [16] 34.47/0.9730 34.90/0.9680 34.86/0.928 31.68/0.870 2.24 39.80/0.9900 35.05/0.9754 29.46/0.9244 24.31/0.8439 21.8
DAIN [2] 34.71/0.9756 34.99/0.9683 35.95/0.940 33.49/0.895 2.04 39.73/0.9902 35.46/0.9780 30.17/0.9335 25.09/0.8584 24.0
VFIFormer [26] 36.50/0.98151  35.42/0.9699% OOM+ OOM+ 1.82%  40.12/0.9907F  36.09/0.9798F  30.67/0.9378F  25.43/0.86431 24.1
CAIN [6] 34.65/0.9730 34.91/0.9690 35.21/0.937 32.56/0.901 2.28 39.89/0.9900 35.61/0.9776 29.90/0.9292 24.78/0.8507 42.8
EMA [46] 36.50/0.98141  35.38/0.9697F  36.74/0.944%  34.54/0.905% 1.84%  39.57/0.9905f  35.85/0.97971  30.80/0.9389%  25.59/0.8650% 65.6
VFIMamba [47] 36.45/0.98071  35.37/0.9699+  37.02/0.9441  34.39/0.9041 1.891  40.41/0.9903+  36.30/0.97941  30.89/0.9387+  25.68/0.866171 66.1
Ours-C 36.10/0.9801 35.38/0.9700 37.12/0.946 34.81/0.908 1.94 40.10/0.9915 36.11/0.9809 30.81/0.9405 25.69/0.8710 4.3
Ours-E 36.20/0.9802 35.42/0.9699 37.17/0.946 34.99/0.910 1.96 40.15/0.9912 36.18/0.9809 30.89/0.9416 25.81/0.8725 6.7
Ours-B 36.52/0.9810 35.47/0.9703 37.33/0.947 35.14/0.911 1.90 40.20/0.9909 36.30/0.9810 31.00/0.9417 25.83/0.8722 16.2
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Figure 6. Visualization of Overlay, Ground-Truth, Synthesis, Difference, Bidirectional Flow, and Mask on the Vimeo90K [43] dataset.
“Overlay” denotes the overlay of the two input frames, “Ground-Truth” is the correct intermediate frame, “Synthesis” is the interpolated
frame, and “Difference” represents the absolute error between the ground truth and synthesis. “Forward Flow and Backward Flow” depict
the motion flows at time ¢ for frames 0 and 1, respectively, while “Mask” is used to blend the frames warped by each flow.
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Figure 7. Visualization of Overlay, Ground-Truth, Synthesis, Difference, Bidirectional Flow, and Mask on the Xiph [29] dataset. “Overlay”
denotes the overlay of the two input frames, “Ground-Truth” is the correct intermediate frame, “Synthesis” is the interpolated frame, and
“Difference” represents the absolute error between the ground truth and synthesis. “Forward Flow and Backward Flow” depict the motion
flows at time ¢ for frames 0 and 1, respectively, while “Mask” is used to blend the frames warped by each flow.
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Figure 8. Visualization of Overlay, Ground-Truth, Synthesis, Difference, Bidirectional Flow, and Mask on the SNU-FILM [6] dataset.
“Overlay” denotes the overlay of the two input frames, “Ground-Truth” is the correct intermediate frame, “Synthesis” is the interpolated
frame, and “Difference” represents the absolute error between the ground truth and synthesis. “Forward Flow and Backward Flow” depict
the motion flows at time ¢ for frames O and 1, respectively, while “Mask” is used to blend the frames warped by each flow. Each row
corresponds to a different difficulty level (Easy, Medium, Hard, Extreme).
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Figure 9. Visual comparison on the Xiph [29] dataset. Our Balance model better captures the fine details of the wooden stick striking the
drum, as indicated by the red arrow. Note that "Overlay” denotes the overlay of the two input frames.
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Figure 10. Visual comparison on Extreme levels of the SNU-FILM [6] dataset. The red arrows highlight regions with large motions and
fine details (e.g., hair and finger features), resulting in smoother synthesis. Note that "Overlay” denotes the overlay of the two input frames.
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