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This supplementary material provides additional details
of the audio resampler and experimental results, which we
could not include in the main paper. We first describe the
details of the audio resampler that reduces the number of
audio embeddings to a fixed length by employing a query-
based transformer [ 1, 3, 8] and the details of MLP in Eq. (4)
of the main paper in Sec. A. We also provide implementa-
tion details of our method in Sec. B. We then present further
quantitative results, including the effect of post-processing
and entire video-text retrieval results on VATEX [15] and
Charades [13] in Sec. C. Moreover, we conduct additional
ablation studies on hyperparameters, such as the layer depth
of the gated fusion transformer, the scaling factor, the max-
imum margin in Eq. (5) of the main paper and the type
of the gate mechanism, and the effect of freezing modal-
ity encoders in Sec. D. Lastly, we provide more qualitative
results, further illustrating the effectiveness of AVIGATE
in Sec. E.

A. More Architectural Details

To efficiently fuse audio embeddings with frame embed-
dings while reducing computational overhead, we introduce
an audio resampler using a query-based transformer frame-
work [1, 3, 8] that utilizes a cross-attention mechanism with
M learnable query embeddings. Specifically, the audio in-
put is fed into Audio Spectrogram Transformer (AST) [6],
and the output is then passed to the audio resampler to re-
duce the number of audio embeddings to a fixed length of
M while preserving essential information. As shown in Fig-
ure Al, the audio resampler comprises K audio resampler
blocks, each with multi-head self-attention (MHSA), multi-
head cross-attention (MHA), and a feed-forward network
(FFN). We set K as 4 for default.

MHSA first allows the learnable query embeddings to
interact and capture contextual relationships among them-
selves, refining their initial representations. This is followed
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Figure A1l. The overall architecture of audio resampler.

by MHA, where the query embeddings attend to the output
of AST, extracting audio embeddings with a fixed length of
M. The FEN then processes the audio embeddings to refine
them. This sequence of operations enables the audio resam-
pler to reduce the number of audio embeddings efficiently
while preserving critical information, facilitating seamless
fusion with the frame embeddings in subsequent stages.

The MLP in Eq. (4) consists of two layers with dimen-
sions R2P*DP/2 and RP/2%1 using a QuickGELU as the
non-linearity between them.

B. More Implementation Details

The details of the training configurations of our method
across datasets are provided in Table A 1. We follow [10, 12]
for most configurations, such as the image encoder, train-
ing epochs, optimizer, batch size, max frames, max words,
learning rate for CLIP encoders, and temperature 7.
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Source dataset

| MSR-VTT [17] VATEX [15] Charades [13]

Image encoder |

2 CLIP-ViTs (B/32 and B/16)

Total epochs 5

Optimizer Adam [9]

Embedding dimension D 512

Batch size 128 128 64
Max frames 12 12 32
Max words 32 32 64
Resampled audio length 12

Depth of Gated Fusion Transformer L 4

Learning rate for Non-CLIP parameters le—4 le—4 5e—4
Learning rate for CLIP encoders le—7

Temperature 7 in Eq.(6) Learnable (After training: 0.01)
Maximum margin § in Eq.(5) 0.1 0.05 0.1
Scaling factor A in Eq.(5) 0.2

Scaling factor « in Eq.(8) 50

Table Al. Training configurations of various datasets.

Text-to-Video Retrieval

Video-to-Text Retrieval

RSum

Methods Modality R@l R@5 R@10 R@l R@5 R@10
CLIP ViT-B/32
CAMOE [4] V+T 44.6 72.6 81.8 45.1 72.4 83.1 399.6

+DSL V+T 473 (+2.7) 742 (+1.6) 845(+2.7) 49.1(+4.0) 743 (+1.9) 843 (+1.2) 413.7 (+14.1)
TS2-Net [11] V+T 47.0 74.5 83.8 453 74.1 83.7 408.4

+DSL V+T 51.1 (+4.1) 76.9 (+2.4) 85.6 (+1.8) - - - -
UATVR [5] V+T 47.5 73.9 83.5 46.9 73.8 83.8 409.4

+DSL V+T 498 (+2.3)  76.1 (+2.2) 855(+2.0) 51.1(+4.2) 748 (+1.0) 851 (+1.3) 4224 (+13.0)
UCOoFiA [16] V4T 48.2 73.3 82.3 - - - -

+SK norm V+T 494 (+1.2)  72.1(-0.9) 835 (+1.2) 47.1 74.3 83.0 409.4
AVIGATE (Ours) A+V+T 50.2 74.3 83.2 49.7 75.3 83.7 416.4

+DSL A+V+T 539 (+3.7) 77.0 (+2.7) 86.0 (+2.8) 53.0 (+3.3) 78.2(+2.9) 854 (+1.7) 433.5(+16.9)
CLIP ViT-B/16
TS2-Net [11] V+T 49.4 75.6 85.3 46.6 75.9 84.9 417.7

+DSL V4T 54.0 (+4.6) 793 (+3.7) 874 (+2.1) - - - -
TEFAL [7] A+V+T 49.9 76.2 84.4 - - - -

+DSL+QB-Norm A+V+T 52.0 (+2.1)  76.6 (+0.4)  86.1 (+1.7) - - - -
UATVR [5] V+T 50.8 76.3 85.5 48.1 76.3 85.4 4224

+DSL V+T 53.5(+2.7)  79.5(+3.2) 88.1(+2.77) 545(+6.4)  79.1(+2.8)  87.9 (+2.5)  442.6 (+20.2)
AVIGATE (Ours) A+V+T 52.1 76.4 85.2 51.2 77.9 86.2 429.0

+DSL A+V+T 563 (+4.2) 80.8(+4.4) 88.1(+29) 57.4(+6.2) 80.2(+2.3) 87.4(+1.2) 450.2 (+21.2)

Table A2. Text-to-video and video-to-text retrieval results on the MSR-VTT 9k split. The post-processing techniques such as DSL [4],

QB-Norm [2], and SK norm are used for further performance boosting.

C. More Quantitative Results

Effect of Post-Processing: Post-processing techniques
have been widely adopted in video-text retrieval to enhance
performance by refining similarity scores. Previous meth-
ods [4, 5, 7, 11, 16] adopt the post-processing techniques,
including Dual Softmax Loss (DSL) [4], Querybank Norm
(QB-Norm) [2], and the Sinkhorn-Knopp algorithm (SK-
Norm), for further improvements in retrieval accuracy. We
also explore the effect of the post-processing technique by
adopting DSL that applies inverted softmax [14] during in-
ference. We report the retrieval performance of AVIGATE
with and without post-processing in Table A2 compared
with existing methods. Our model, AVIGATE, consistently
achieves superior performance across all evaluation met-

rics for both text-to-video and video-to-text retrieval tasks,
outperforming all previous methods by significant margins.
Specifically, for the CLIP ViT-B/32 backbone, AVIGATE
with post-processing achieves R@1 of 53.9% for text-to-
video retrieval. Furthermore, in video-to-text retrieval, AVI-
GATE with DSL achieves R@1 of 53.0%. Similarly, for the
CLIP ViT-B/16 backbone, AVIGATE achieves substantial
gains over existing methods. When using post-processing,
our method achieves R@1 of 56.3% for text-to-video re-
trieval, representing a considerable 2.3%p improvement
over TS2-Net [11]. In video-to-text retrieval, AVIGATE
also outperforms other methods with R@1 of 57.4%.

Entire Performance on VATEX [15] and Charades [13]:
We present the complete video-text retrieval results on VA-



Text-to-Video Retrieval

Video-to-Text Retrieval

RSum

Methods Modality R@l R@5 R@10 R@l R@5 R@10
CLIP ViT-B/32
AVIGATE (Ours) A+V+T 63.1 90.7 95.5 76.6 97.3 98.8 522.0

+DSL A+V+T 70.7 (+7.6) 934 (+2.7) 955(+1.4) 853 (+8.7) 99.1(+1.8)  99.8 (+1.0) 5452 (+23.2)
CLIP ViT-B/16
AVIGATE (Ours) A+V+T 67.5 93.2 96.7 80.7 97.8 99.5 5354

+DSL A+V+T 74.6 (+7.1) 953 (+2.1) 978 (+1.1) 887 (+8.0) 993 (+1.5) 999 (+0.3)  555.6 (+20.2)

Table A3. Text-to-video and video-to-text retrieval results on VATEX. The post-processing technique, DSL [4], is used for further perfor-

mance boosting.

Text-to-Video Retrieval

Video-to-Text Retrieval

RSum

Methods Modality R@1 R@5 R@10 R@1 R@5 R@10
CLIP ViT-B/32
AVIGATE (Ours) A+V+T 18.8 40.0 51.8 17.2 40.4 51.7 219.9

+DSL A+V+T 21.3 (+2.5) 424 (+2.4) 544 (+2.7)  20.0 (+2.8)  43.0 (+2.6) 549 (+3.2)  236.0 (+16.1)
CLIP ViT-B/16
AVIGATE (Ours) A+V+T 24.1 48.5 61.3 229 48.4 61.0 266.2

+DSL A+V+T 27.5(+3.4) 527 (+42) 64.5(+3.2) 271 (+42) 527 (+43)  65.0 (+4.0)  289.5 (+23.3)

Table A4. Text-to-video and video-to-text retrieval results on Charades. The post-processing technique, DSL [4], is used for further

performance boosting.

TEX and Charades in Table A3, including both text-to-
video and video-to-text retrieval. The results are reported
using two variants of the CLIP ViT backbone, CLIP ViT-
B/32 and CLIP ViT-B/16. Moreover, we assess the effect of
the post-processing technique, DSL [4], for further perfor-
mance boosts. On VATEX, with the CLIP ViT-B/32 back-
bone, AVIGATE achieves notable results in text-to-video
retrieval, with R@1 of 63.1% and 76.6% for text-to-video
retrieval and video-to-text retrieval, respectively. When ap-
plying DSL, we observe significant improvements across
all metrics. Specifically, it improves AVIGATE by a large
margin, 7.6%p and 8.7%p in R@1 for text-to-video re-
trieval and video-to-text retrieval, respectively. When using
the larger backbone, CLIP ViT-B/16 backbone, AVIGATE
demonstrates the scalability across different backbone sizes,
achieving R@1 of 67.5% for text-to-video retrieval and
80.7% for video-to-text retrieval. Moreover, the use of
DSL consistently boosts the retrieval accuracy overall, with
20.2%p improvements in RSum. On Charades, with the
CLIP ViT-B/32 backbone, AVIGATE achieves R@1 of
18.8% in text-to-video retrieval and 17.2% in video-to-text
retrieval, which modestly increase to 21.3% and 20.0%
when DSL is applied. Employing the larger backbone,
CLIP ViT-B/16, AVIGATE attains R@1 of 24.1% in text-
to-video retrieval and 22.9% in video-to-text retrieval, with
DSL boosting these figures to 27.5% and 27.1%.

D. More Ablation Studies

We further conduct ablation studies using varying hyperpa-
rameters in AVIGATE. Similar to the main paper, we report

text-to-video retrieval results on the MSR-VTT dataset [17]
with CLIP ViT-B/32. Table A5 presents the whole results
of the ablation studies.

Layer Depth of Gated Fusion Transformer: We present
the impact of the number of layers of the gated fusion trans-
former (L) in Table A5(a) and observe that the performance
gradually improves up to L=4, where the best performance
is achieved.

Hyperparameters A and § in Eq. (5): We investigate the
impact of the scaling factor A and the maximum margin 9 in
Eq. (5) of the manuscript. It is worth noting that the adaptive
margin in Eq. (5) becomes 0 when A or § are set to 0, lead-
ing the loss in Eq. (6) to the conventional contrastive loss.
As shown in Table A5(b), when A is set to 0.2, the model
yields the best performance. Meanwhile, setting A to 0.1
results in a slight decrease in performance, indicating that
a smaller scaling factor may not provide sufficient margin
adjustment. However, increasing A to 0.3 does not lead to
further improvements. Similarly, Table A5(c) presents the
effect of varying the maximum margin §. We observe that
the performance gradually improves up to 6 = 0.1. Increas-
ing 0 beyond 0.1 degrades performance due to excessively
large margins pushing negative pairs too far apart.

Gate Mechanism Type: Our method employs a soft gate
mechanism, which allows for continuous modulation of the
contribution of audio during fusion. To evaluate the effec-
tiveness of the soft gate mechanism, we compare the soft
gate with a hard gate mechanism, which assigns a gating
score of 1 if it exceeds a predefined threshold and O other-
wise. As shown in Table A5(d), using the hard gate under-



performs our method. Unlike using the hard gate mecha-
nism, our method facilitates the effective use of relevant au-
dio cues while minimizing the impact of irrelevant or noisy
audio signals; it enables the model to leverage informative
audio more precisely, thereby improving retrieval accuracy.
Effect of freezing AST: We freeze AST to reduce train-
ing costs. Fine-tuning AST is impractical since it processes
1,214 tokens per input audio, far more than 50 tokens for
each video frame in ViT-B/32. A solution is to largely re-
duce the batch size, which however degrades performance
since the contrastive loss is highly dependent on the batch
size. The results of freezing and fine-tuning AST with tiny
input batches are reported in Table AS5(e), while freezing
AST outperforms fine-tuning it. The results are attributed to
the characteristics of AST pre-trained on the audio classifi-
cation dataset, allowing it to extract discriminative embed-
dings from audio inputs. Therefore, we decided to freeze
the AST instead of fine-tuning that requires a burden of
computational and memory costs.

Freezing both CLIP image and text encoders: As shown
in Table A5(f), freezing the CLIP image and text encoders
leads to noticeably lower performance, highlighting the im-
portance of fine-tuning both encoders, as also demonstrated
in prior work such as CLIP4Clip [12]. Fine-tuning is essen-
tial for capturing task-specific video and text information
and improving the alignment between them.

E. More Qualitative Results

We further present additional qualitative results that illus-
trate the effectiveness of AVIGATE in leveraging audio in-
formation for text-to-video retrieval. Figure A2 shows the
Top-1 retrieved videos from our method, including the cor-
responding audio signals, to highlight how audio cues influ-
ence retrieval outcomes.

In Figure A2(a) and (b), we present a scenario where the
audio provides valuable information that enables improv-
ing retrieval performance. AVIGATE, which incorporates
audio through the gated fusion transformer, successfully re-
trieves the correct video corresponding to the text query. In
contrast, the method without audio information (i.e., w/o
Audio) fails to retrieve the true matches. This comparison
highlights the benefit of utilizing informative audio cues.

Conversely, Figure A2(c) and (d) present another sce-
nario where the audio input contains irrelevant information,
such as background noise. AVIGATE effectively filters out
the uninformative audio signals through the gating mecha-
nism. The gating function assigns low gating scores, allow-
ing the model to focus only on the visual cues. As a result,
AVIGATE successfully retrieves the correct videos. In con-
trast, the method without the gating function (i.e., w/o Gate)
is impacted by the noisy audio and fails to retrieve the true
matches.

These qualitative results demonstrate that the gated fu-

Text-to-Video Retrieval

Ablated Setting R@l R@5 R@10
(a) Layer depth of Gated Fusion Transformer: L
L=1 49.0 74.0 82.6
L=2 49.8 74.0 83.0
L=4 50.2 74.3 83.2
L=6 49.5 74.2 82.6
(b) Scaling factor in Eq.(5): A
A=0.0 48.0 75.1 83.4
A=0.1 494 74.8 83.8
A=0.2 50.2 74.3 83.2
A=0.3 50.0 74.4 83.2
(¢) Maximum margin in Eq.(5): ¢
6=0.00 48.0 75.1 83.4
6=0.05 494 75.1 83.6
6=0.10 50.2 74.3 83.2
6=0.15 49.3 74.8 83.8
6=0.20 48.3 74.4 83.9
(d) Gate mechanism type
Hard Gate 49.3 75.0 82.5
Soft Gate 50.2 74.3 83.2
(e) Effect of freezing AST (Batch size:32)
Freezing 48.2 75.3 83.7
Fine-tuning 48.0 73.5 83.4
(f) Effect of freezing CLIP encoders
Freezing 41.1 68.5 78.2
Fine-tuning 50.2 74.3 83.2

Table AS. Ablation studies on hyperparameters. gray corre-

sponds to our default setting.

sion transformer successfully filters out irrelevant audio
while leveraging valuable audio information when the au-
dio contributes positively.
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Figure A2. Top-1 text-to-video retrieval results of our method on MSR-VTT, where they are true matches. The audio provides informative
cues for accurate retrieval, where “a man is talking” in the query text is not visible (a) and “talk- - - san diego” in the query text is not
visible but audible (b). However, neglecting these informative audio signals (i.e., w/o Audio) fails to retrieve true matches. Meanwhile, the
irrelevant audio is filtered by the gated fusion transformer, leading to accurate retrieval results (c) and (d); without the gating mechanism
(i.e., w/o Gate), it leads to retrieving false matches due to the irrelevant audio.
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