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In this supplementary document, we provide details on
the keypoint embedding module (Sec. 1) and experimen-
tal settings (Sec. 2), as well as additional experimental re-
sults Sec. 3).

1. Keypoint embedding module details

Our keypoint embedding module consists of two upsam-
pling layers, one residual block, and two convolution lay-
ers. For the upsampling layers, we adopt the head design
from ViTPose++ [7]. The residual block combines a stan-
dard 3×3 convolution with a skip connection, where we re-
place the ReLU activation with SiLU [1]. The final two
convolution layers include a 3×3 convolution, batch nor-
malization, SiLU activation, and a 1×1 output convolution.
Although lightweight and simple, our embedding module
effectively enhances multi-dataset training. We initialize
the prototypes using a truncated normal distribution with
a mean of 0, a standard deviation of 0.02, and a range of
[−2, 2], followed by L2-normalization across the embed-
ding dimension.

2. Experimental setup

2.1. Hyperparameters

We set the embedding dimension to F = 64, the number
of in-class prototypes to M = 3, and the total number of
keypoints to J = 214. The output heatmap dimensions
were set to a width of W = 48 and a height of H = 64.
Following [11], we set κ = 0.05 for obtaining the target tj .
The prototype update momentum λ was set to 0.999. For
the loss weights, we set α = 3.33×10−6, β = 1.25×10−7,
γ = 1.25 × 10−8, δ = 0.01, and ζ = 0.001. The impact
of varying hyperparameter values (on the COCO validation
set, measured in mean average precision; AP) is presented
in Tabs. 1 to 3, demonstrating robust performance across
different hyperparameter settings. The final hyperparameter
values are highlighted in bold.

F AP

32 77.1
64 77.1

128 77.1

Table 1. Impact of varying the embedding dimension F (mean AP
on COCO validation set).

α AP

3.33× 10−6 77.1
6.25× 10−6 77.1
1.25× 10−5 77.1

β γ AP

1.00× 10−7 1.00× 10−8 77.1
1.25× 10−7 1.25× 10−8 77.1
5.00× 10−7 5.00× 10−8 77.1
1.00× 10−6 1.00× 10−7 77.1

Table 2. Impact of varying the loss weight values α, β, and γ
(mean AP on COCO validation set).

δ AP

5.0× 10−3 77.3
1.0× 10−2 77.2
5.0× 10−2 77.3

ζ AP

1.0× 10−4 77.3
1.0× 10−3 77.2
1.0× 10−2 77.3

Table 3. Impact of varying the loss weight values δ and ζ (mean
AP on COCO validation set).

2.2. APT-36K preprocessing

For APT-36K [9], since official train, validation, and test
splits are not provided, we partitioned the dataset using a
7:1:2 ratio following the guidelines of the original paper.
This resulted in approximately 24,900 images and 37,000
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Method AP AP50 AP75 APM APL AR

ViTPose++-B 76.4 92.7 84.3 73.2 82.2 81.5
ViTPose++-H 78.5 93.4 86.2 75.3 84.4 83.4

Ours-B 76.6 92.6 84.4 73.4 82.4 81.7
Ours-H 78.6 93.3 86.2 75.3 84.4 83.5

Table 4. COCO test-dev evaluation results.

instances for training, 3,600 images and 5,400 instances for
validation, and 6,900 images and 10,700 instances in test-
ing. To ensure that videos in the validation and test sets do
not appear in the training set, each video is assigned to a
single split.

2.3. 3DPW
We use the processed annotations from ScoreHypo [8]. To
obtain 2D keypoint annotations, we use the 2D projected
3D SMPL keypoints. We reformat the annotations to the
COCO style and employ COCO-style evaluation metrics.

2.4. Training.
We trained our method on a system with four NVIDIA
A100 GPUs or four NVIDIA A6000 GPUs using PyTorch
1.11 in an Ubuntu 20 environment. To enhance training ef-
ficiency, we also enabled automatic mixed precision with
distributed training. We set the random seed value to 0 for
all experiments to avoid randomness during training.

For learning rate scheduling, we start with an initial
learning rate of 0.001 and reduce it by a factor of 0.1 at
the 50th and 90th epochs. During the first 50 epochs, only
the embedding module and prototypes are updated, while
all other components remain frozen. At the start of the 50-
th epoch, we set the backbone and the multi-heads to be
trainable and freeze the prototypes. We then apply the LCSS
loss function (Eq. 8 in the main paper).

For transfer learning on InterHand2.6M, we follow ViT-
Pose++ configurations. We train the model for 60 epochs
with 5.0e-4 initial learning rate. In the case of transfer learn-
ing on 3DPW, we train the model for 30 epochs with 1.0e-4
initial learning rate. We train the prototypes for 30 epochs
in InterHand2.6M, and 15 epochs in 3DPW.

3. Additional results
3.1. Quantitative results
Table 4 presents the pose estimation results on the COCO
test-dev set. Following previous works [3, 5, 6], we cropped
the input images based on detected bounding boxes. Our
method outperforms the baseline ViTPose++ by 0.2 AP
with the Base backbone and by 0.1 AP with the Huge back-
bone.

Method Val Test Val (occ) Test (occ)

ViTPose++-B 81.1 82.0 64.0 64.1
ViTPose++-H 85.7 86.8 72.6 72.9

Ours-B 82.2 83.1 66.3 66.2
Ours-H 86.0 87.0 73.2 73.7

Table 5. OCHuman evaluation results (measured in mean average
precision; AP). Ground-truth bounding boxes were used for crop-
ping.

Method Average score

ViTPose++ 68.2
+UniDet 68.9

Ours 70.6

Table 6. Performance of different MDT methods (average over six
datasets).

Method InterHand 3DPW

ViTPose++ 86.2 81.7
Trn. scratch 86.1 56.8
AIC-trained 86.3 81.5

Ours 87.1 83.6

Table 7. Performance of domain transfer methods on the Inter-
Hand2.6M (AUC) and 3DPW (AP) datasets.

We also performed a downstream evaluation on unseen
data using the OCHuman [10] dataset, which comprises
2,500 validation images and 2,231 test images, with no
available training set. The results are presented in Tab. 5.
Since OCHuman follows the COCO keypoint format, we
used COCO-trained models for evaluation. Here, ‘(occ)’
denotes the evaluation of the occluded keypoints, following
the protocol of [2]. Our method outperforms the baseline
ViTPose++, particularly on the (occ) subsets, demonstrat-
ing its robustness to occlusion.

Pose estimation lacks a large, generic, high-quality
dataset, which is a key motivation for our multi-dataset
training (MDT) approach. As shown in Tab. 7, our method
outperforms models trained from scratch or transferred
from the largest single dataset (AIC) in domain transfer
scenarios for pose estimation. Furthermore, compared to
existing MDT problems (e.g., classification and detection),
skeletal heterogeneity in pose estimation presents a unique
challenge, making naı̈ve dataset merging or multi-head su-
pervision ineffective. Table 6 demonstrate this: Our method
significantly outperforms conventional label merging ap-
proaches when applied to pose datasets such as UniDet [12].
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Figure 1. Pose estimation examples comparing ViTPose++ and our method.

3.2. Qualitative results
Figure 1 presents additional human pose estimation exam-
ples. In the first two rows, ViTPose++ struggles with accu-
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Figure 2. Pose estimation examples for animals using ViTPose++ and our method.

Figure 3. Pose estimation examples from our algorithm on the InterHand2.6M dataset.

rate leg estimation and exhibits inconsistent keypoint pre-
dictions across different dataset skeletons. In contrast, our
method accurately estimates the legs and maintains consis-
tency across varying skeletons. In the bottom two rows,
ViTPose++ incorrectly predicts the right and left foot at the
same location, whereas our method correctly estimates the
legs, except for AIC.

Figure 2 provides additional comparisons on the AP-
10K animal dataset. For cattle (first two columns), ViT-
Pose++ mislocalizes the left front leg in the APT-36K skele-
ton, while our method correctly identifies it. Similarly, in
the last two columns (kangaroo), ViTPose++ confuses the
right front leg with the left, an error our method success-
fully avoids.

Figure 3 and Figure 4 provide additional pose estima-
tion examples of our algorithm on the InterHand2.6M and
3DPW datasets, respectively. Our method demonstrates
strong generalization across hand and human shapes, even
under various self-occlusion and external occlusion scenar-
ios.

We visualize the prototypes constructed by our algo-
rithm in Fig. 5, using those trained with the ViT-B back-
bone. The InterHand and 3DPW prototypes are separately
trained during the domain transfer process, while others are
jointly learned during MDT. The prototypes effectively cap-
ture the diversity of representations within the embedding
space and successfully align similar keypoints across dif-
ferent datasets without compromising localization perfor-



Figure 4. Pose estimation examples from our algorithm on the 3DPW dataset.

mance.
For example, in the upper red box in the figure, the

COCO nose joint and the 3DPW jaw joint prototypes are
closely aligned. Similarly, the lower red box contains a
COCO left hip joint prototype and a 3DPW pelvis joint. As
validated by domain transfer on InterHand and 3DPW, our
learned embeddings effectively incorporate new skeletons
without retraining of the embedding module.

3.3. Failure cases
In Fig. 6, we provide failure cases caused by unseen skele-
tons and poses. In (a–b), we show our COCO skeleton pre-
dictions on CrowdPose data. Since CrowdPose has a differ-
ent skeletal structure than the training datasets, the predic-
tions do not fully conform to its intended format, although
the pose is reasonably well estimated in (a). Under strong
occlusion (b), our method may also struggle to predict accu-
rate skeletons, as seen in the misplacement of the estimated
left foot at the location of the right foot.

Similarly, (c–d) show our AP-10K skeleton predictions
on a COP3D [4] example, where the pose deviates signif-
icantly from those observed during training (e.g. the cat’s
head is tilted back, looking upward). In (d), our method
fails to localize the cat’s eyes due to this challenging, un-
seen pose. Incorporating temporal information could im-
prove robustness in such cases.
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Figure 5. t-SNE visualization of the prototypes. Best viewed when zoom-in.
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Figure 6. Example pose predictions: (a-b) CrowdPose predictions using the COCO skeleton; (c–d) COP3D predictions using the AP-10K
skeleton.
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