Track4Gen: Teaching Video Diffusion Models to Track Points
Improves Video Generation

Supplementary Material

This supplementary material is structured as follows:
Sec. 1 provides additional implementation details for the
experiments. In Sec. 2, we report supplementary quan-
titative metrics for video generation assessment. Sec. 3
presents additional qualitative results for image-to-video
generation, while Sec. 4 focuses on qualitative video track-
ing results. Following this, we discuss the potential limita-
tions and failure cases of Track4Gen in Sec. 5.

A comprehensive view of results in the form of videos
is available on our project page. Furthermore, an extensive
video generation comparison against all baselines can be
found on this page.

1. Experimental Details

1.1. Preprocessing Video Correspondence

We utilize RAFT optical flow [10] to compute dense point
trajectories across video frames. RAFT has demonstrated
robust point tracking performance across various input
types [12], even compared to supervised trackers like TAP-
Net [5]. Following previous tracking literature [11, 12], we
first compute pairwise correspondences between all consec-
utive frames. Tracks are then formed by chaining the es-
timated flow fields and filtered using a cycle consistency
constraint. Specifically, given a point x* in frame 4 and opti-
cal flow between frames 7 and 7 + 1 denoted as f, ,;.,
the corresponding point in frame ¢ + 1 is estimated as
X =x"+ f, .1 (x"). We retain the pair (x*,x"*!) only
if it satisfies [|x* — (x**! 4+ f, 1 _,;(x*"1))||2 < 1.5, where
hxuw is set as 320x576. Also, a pair (x%,x7) is filtered out
if [0 —x1 73> 2 and [[xi = (x>T4 £, (7)) o< 15.

1.2. Refiner Network

When training Track4Gen, we design a convolutional neu-
ral network for the refiner module RR4,. The network
comprises 8 layers, each with a fixed channel dimension
of 640, a kernel size of 3, stride of 1, and padding of
1. The first 7 layers follow the structure Conv2d —
BatchNorm2d — ReLU, except for the last layer which
consists of Conv2d — ReLU.

To better demonstrate the architecture of the baseline
Track4Gen without Refiner, we provide a visualization in
Fig. 1. The figure compares the training schemes of this
baseline with Track4Gen. In this variant, the correspon-
dence loss Lo is computed directly from the raw video
diffusion features b
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Figure 1. Comparison of Track4Gen with and without Refiner.
Top: Correspondence loss Lo is computed using the refined fea-
tures le:N. Bottom: Correspondence 1oss Lo is computed using
the raw diffusion features 'Y .

1.3. User Study Details

Fig. 2 shows an example of our user evaluation page. The
input image is displayed on the left, while the middle and
right columns show two generated videos for comparison.
One result is from Track4Gen, and the other is randomly
selected from four baselines: pretrained Stable Video Dif-
fusion [3], finetuned Stable Video Diffusion without corre-
spondence supervision, and Track4Gen trained without the
refiner module. Note that the order of Track4Gen and the
baseline is randomly shuffled (i.e., Track4Gen may appear
first or the baseline may appear first). Participants are asked
to answer two questions: (i) Identity preservation: Which
video better preserves the identity of the main object(s)?
(i) Motion naturalness: Which video has more natural mo-
tion?

1.4. Encoding Long Videos with Video Diffusion
Models

Majority of video diffusion models struggle with flexibility
in temporal resolution. Specifically, if a model is trained
on a fixed temporal resolution of IV frames (e.g., N = 24),
the quality of generated videos significantly degrades when
attempting to generate videos with a much larger number
of frames. Similarly, when these models are used as video
feature extractors, the extracted features are invalid if the in-
put video contains significantly more frames than the model
was trained to handle.

This limitation poses a challenge, as most videos in
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Figure 2. [Example user evaluation page. The order of
Track4Gen and the baseline is randomly shuffled to ensure a fair
comparison.

Table 1. CLIP similarity and LPIPS comparison for assessing
temporal consistency. We compare Track4Gen to the pre-trained
SVD as well as a finetuned SVD on the same dataset (finetuned
SVD), and a variant of Track4Gen without the refiner module.

CLIPSIM + LPIPS |

Pretrained SVD 0.9839 0.1373

finetuned SVD 0.9869 0.0913
Track4Gen without refiner 0.9923 0.0547
Track4Gen 0.9924 0.0533

video tracking benchmarks contain more frames than the
training resolution of video diffusion models. To address
this, for a benchmark video with temporal resolution M,
where M > N, we split the M -frame video into [V-frame
segments and encode each segment independently. For the
final segment, which may contain fewer than N frames,
we extend it by borrowing frames from the previous seg-
ment. For instance, if the last segment is 14 frames long
and N = 24, we append the last 10 frames from the previ-
ous segment to complete the sequence. This extended seg-
ment is then passed through the video diffusion model to
extract features. After encoding, we discard the features of
the the borrowed frames, retaining only the features for the
original frames in the segment.

2. Additional Metrics

To further evaluate the temporal consistency of generated
videos, we report CLIPSIM [8] and LPIPS [14] metrics.
For CLIPSIM, we compute the average CLIP similarity be-
tween all neighboring frame pairs using the CLIP Image En-
coder. Similarly, we calculate the average LPIPS distance
between neighboring frame pairs to assess perceptual differ-

ences. As shown in Tab. 1, Track4Gen achieves the highest
CLIP similarity and lowest LPIPS distance, demonstrating
its superior temporal consistency in the videos it generates.

3. Additional Video Generation Results

3.1. Comparisons

In Fig. 4 and 5, we present a comparison of Track4Gen
against all three baselines: (1) the pretrained Stable Video
Diffusion, (2) Stable Video Diffusion finetuned without the
tracking loss, and (3) Track4Gen trained without the Refiner
module. For a better view, please visit page 2 (top) of our
project page.

3.2. Video Generation with Embedded Tracks

To demonstrate that Track4Gen generates videos with tem-
porally consistent feature representations, we visualize the
predicted point tracks annotated on the generated videos in
Fig. 3. These tracks are computed in a zero-shot setting,
using the intermediate features extracted from the final de-
noising step.

4. Additional Video Tracking Results

4.1. Feature Comparisons

DINO features [4, 7] are widely recognized for their accu-
racy in image correspondence tasks [1, 7, 13] and have also
been shown to excel in temporal correspondence matching
across videos [2, 11]. Thus, in Fig. 6, we present additional
comparisons of video tracking using the intermediate fea-
tures of pretrained models, including Track4Gen, DINOv2
[7], Stable Video Diffusion [3], and Zeroscope [9]. Further-
more, Fig. 7 offers a direct comparison between Track4Gen
and DINOv2 features. While Track4Gen features demon-
strate robustness, they are less effective in videos with oc-
clusions.

4.2. Track4Gen with DINO-Tracker

We present additional results of adapting Track4Gen fea-
tures with DINO-Tracker [11] in Fig. 8. Moreover, the op-
timization progress is visualized in Fig. 9, showing how
the optical flow-guided test-time adaptation enhances the
incomplete raw Track4Gen features.

5. Discussion on Limitation and Failure

For video results related to this section, please refer to page
4 of our project page. While Track4Gen significantly en-
hances appearance constancy in generated videos, it tends
to result in reduced camera motion compared to the origi-
nal Stable Video Diffusion prior, a behavior also observed
in the finetuned Stable Video Diffusion baseline. (see Fig.
11). We attribute this to the training dataset used for finetun-
ing. In addition, in some cases Track4Gen produces unreal-



istic motion and exhibit artifacts on human faces and hands,
particularly when the resolution or size of the human sub-
ject in the video is small — a common limitation shared by
video diffusion models [6], including the baselines. Typical
failure cases of video generation are illustrated in Fig. 12.

We also present failure cases of real-world video track-
ing in Fig. 10. Track4Gen features often struggle to cap-
ture accurate correspondences in videos with fast-moving
objects and blurred frames. Additionally, Track4Gen lacks
robustness in challenging videos with multiple semantically
similar objects, where trajectories can shift from one object
to another. An interesting direction for future work is aug-
menting the proposed correspondence loss with additional
terms that account for occlusion predictions, which could
further improve video generation performance.
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Figure 3. Generated Videos with Embedded Tracks. Predicted point tracks are annotated on the videos generated by Track4Gen.
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Figure 4. Qualitative video generation results: Track4Gen compared against all three baselines.
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Figure 5. Qualitative video generation results: Track4Gen compared against all three baselines.
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Figure 6. Additional feature comparison on real-world video tracking: Track4Gen vs DINOv2 vs Stable Video Diffusion vs ZeroScope
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Figure 7. Additional feature comparison on real-world video tracking: Track4Gen vs DINOv2
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Figure 8. Extending Track4Gen features with test-time adaptation [11].
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Figure 9. Optimization progress visualization. The first rows show tracking results using zero-shot Track4Gen features, while the third
rows display results after 5,000 optimization steps.
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Figure 10. Video tracking failure cases. Track4Gen features struggle to capture point correspondences in videos with fast-moving objects
or multiple semantically similar objects.
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Figure 12. Video generation failure cases. Track4Gen may generate videos with physically unrealistic motion and artifacts on human
faces. For instance, the red bus (row 1) drives backward, the frog (row 2) jumps mid-air, and the faces (row 3,4) display artifacts.
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