
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding

Supplementary Material

A. Dataset Class Statistics

Dataset Statistics of ARKit LabelMaker. In Figure A1,
we present the point count for each class in the LabelMaker
WordNet label space. Our dataset maintains a substantial
data distribution even across tail classes.

wa
ll

ce
ilin

g
flo

or
ca

bi
ne

t
do

or
wi

nd
ow be

d
so

fa
cu

rta
in

m
irr

or
ch

ai
r

bo
ok

sh
el

f
do

or
fra

m
e

ta
bl

e
pi

ct
ur

e
m

at
co

un
te

rto
p

ra
di

at
or

ba
th

tu
b

pl
an

t
bo

x
cu

sh
io

n
di

sp
la

y
wa

rd
ro

be
ar

m
ch

ai
r

la
m

p
fri

dg
e

fir
ep

la
ce

ch
es

t_
of

_d
ra

we
rs

ap
pa

re
l

ha
nd

ca
rt

sin
k

to
we

l
st

ov
e

co
ffe

e_
ta

bl
e

st
an

d
de

sk
to

ile
t

bl
in

d
sh

ow
er

_s
ta

ll
as

hc
an

te
dd

y
bo

ok
wa

sh
er

ba
nn

ist
er

bo
ttl

e
st

ai
rw

ay
ba

ck
pa

ck
ba

sk
et

st
ep

ov
en

ra
ng

e_
ho

od
fo

ot
st

oo
l

pe
rs

on
m

icr
ow

av
e

st
oo

l
sli

pp
er

sw
iv

el
_c

ha
ir

clo
th

es
_h

am
pe

r
va

se
bl

an
ke

t
bi

cy
cle

103

104

105

106

107

108

109

#p
oi

nt
s

co
ffe

e_
m

ak
er

sle
ep

in
g_

ba
g

ba
g

clo
ck

tra
y

pi
an

o
sh

oe
la

pt
op

lig
ht

po
ol

_t
ab

le
sh

ow
er

_c
ur

ta
in

ra
ilin

g
ba

g
bu

ck
et

di
sh

wa
sh

er
be

nc
h

de
co

ra
tio

n
bo

wl
sa

ck
co

m
pu

te
r

ke
ttl

e
pr

in
te

r
pl

at
e

fo
od

ca
nd

le
fa

uc
et fa
n

ja
ck

et
m

ug
ba

gg
ag

e
to

ile
t_

tis
su

e
so

ap
_d

isp
en

se
r

ki
tc

he
n_

isl
an

d
co

lu
m

n
sw

itc
h

sig
nb

oa
rd

pa
pe

r
to

as
te

r
pr

oj
ec

to
r

bl
ac

kb
oa

rd
ch

op
pi

ng
_b

oa
rd

di
sp

en
se

r
du

m
bb

el
l

se
at ja
r

st
ep

_s
to

ol
fu

rn
itu

re
m

ai
lb

ox
lo

ud
sp

ea
ke

r
co

at
ra

ck
bo

ot
h

wi
nd

ow
sil

l
sh

irt
di

sh
_r

ac
k

st
ap

le
r

la
dd

er
al

ar
m

_c
lo

ck
pa

pe
r_

to
we

l
ra

ck
gu

ita
r

ha
m

pe
r

103

104

105

106

107

108

109

#p
oi

nt
s

tre
ad

m
ill

he
lm

et
te

le
ph

on
e

co
m

pu
te

r_
ke

yb
oa

rd
m

ac
hi

ne
re

m
ot

e_
co

nt
ro

l
co

at
_h

an
ge

r
co

nt
ai

ne
r

to
ot

hb
ru

sh
m

ou
se

dr
in

ki
ng

_f
ou

nt
ai

n
um

br
el

la
va

cu
um ha

t
dr

ye
r

pi
pe

m
et

ro
no

m
e

br
us

h
cr

at
e

tri
po

d
da

rtb
oa

rd
pi

tc
he

r
m

us
ic_

st
an

d
ea

rp
ho

ne
se

wi
ng

_m
ac

hi
ne

do
llh

ou
se

so
ap

wa
te

r_
he

at
er

ba
th

ro
be ba

r
ba

nn
er

pl
un

ge
r

tir
e

pa
pe

r_
cu

tte
r

br
oo

m
fry

in
g_

pa
n

sc
al

e
ve

nd
in

g_
m

ac
hi

ne iro
n

ve
nt

so
ap

_d
ish ro
pe

ha
nd

_b
lo

we
r

en
ve

lo
pe

wa
te

r_
co

ol
er

co
nt

ro
l

to
ol

bo
x

co
at

th
er

m
os ro
d

fir
e_

ex
tin

gu
ish

er
te

nn
is_

ra
ck

et
iro

ni
ng

_b
oa

rd
sh

re
dd

er
th

er
m

os
ta

t
fir

e_
al

ar
m

he
at

er
du

pl
ica

to
r

ga
t

be
an

ba
g

du
st

pa
n

da
is

103

104

105

106

107

108

109

#p
oi

nt
s

Figure A1. Number of points for each ARKitLabelMaker class.

B. PTv3 Results on ScanNet++

We also report the training and evaluation results of PTv3 on
ScanNet++ in Table B1. Unfortunately, the numbers are not
fully comparable, because we were so far unable to repor-
duce the validation results of PTv3. When the authors of [2]
released PTv3’s performance on ScanNet++, they expanded
Structured3D’s training set from 6,519 to 18,348 samples,
which we refer to as Structured3D v2. Due to limited com-
putational resources, we could not train with this updated
version of Structured3D yet. We will update ScanNet++ re-
sults once the new result is available. Our pre-training and
joint-training (PPT) experiments show performance gains
over vanilla PTv3, with PTv3-PPT achieving similar im-
provements to the original PTv3-PPT but with significantly
less training data.

C. Tail Classes Performance of PTv3

We give a detailed plot of the number of correctly predicted
tail class points on ScanNet200 validation set in Figure C2.

PTv3 Variant Training Data #Data val mIoU

vanilla ScanNet++ 713 41.8
fine-tune (Ours) ARKit LabelMakerSN200 → ScanNet++ 4471 → 713 42.5
PPT [2] ScanNet200 + ScanNet++ + Structure3Dv2 45868 45.3†

PPT (Ours) ScanNet200 + ScanNet++ + ARKit LabelMaker 11168 44.5
PPT (Ours) ScanNet+ ScanNet200 + ScanNet++ + Structure3D + ARKit LabelMaker 30386 44.6

Table B1. Semantic Segmentation Scores on ScanNet++ [3].
We evaluated the efficacy of our ARKit LabelMaker dataset on the
ScanNet++ benchmark using both pre-training and joint training
methods. †: this number comes from Wu et al..

po
st

er
ca

se
 o

f w
at

er
 b

ot
tle

s
pa

pe
r

iro
ni

ng
 b

oa
rd

to
ile

t p
ap

er
 d

isp
en

se
r

clo
ck

bu
ck

et
tis

su
e 

bo
x

ke
yb

oa
rd

 p
ia

no
cr

at
e

to
as

te
r o

ve
n

to
ile

t s
ea

t c
ov

er
 d

isp
en

se
r

so
ap

 d
isp

en
se

r
tra

y
pa

pe
r c

ut
te

r
pa

pe
r b

ag sig
n

tu
be

fo
ld

ed
 c

ha
ir

cu
p

ba
r

pa
pe

r t
ow

el
 ro

ll
gu

ita
r

la
un

dr
y 

de
te

rg
en

t
br

oo
m

so
ap

 d
ish

fir
e 

ex
tin

gu
ish

er
sh

ow
er

 fl
oo

r
sh

ow
er

 c
ur

ta
in

 ro
d

bo
wl

sh
ow

er
 h

ea
d

pl
at

e
ha

t
clo

se
t r

od
ha

ir 
dr

ye
r

he
ad

ph
on

es
ca

le
nd

ar
to

ile
t p

ap
er

 h
ol

de
r

co
ffe

e 
ke

ttl
e

to
as

te
r

wa
te

r b
ot

tle ba
ll

ve
nt

du
st

pa
n

po
we

r o
ut

le
t

co
at

 ra
ck

sc
al

e
pl

un
ge

r
ha

nd
ica

p 
ba

r
wa

te
r p

itc
he

r
du

m
bb

el
l

lig
ht

 sw
itc

h
m

ou
se

sp
ea

ke
r

pr
oj

ec
to

r
st

uf
fe

d 
an

im
al

fir
e 

al
ar

m
po

we
r s

tri
p

al
ar

m
 c

lo
ck

st
or

ag
e 

co
nt

ai
ne

r
ca

nd
le

m
us

ic 
st

an
d

gu
ita

r c
as

e
cd

 c
as

e
pu

rs
e

lu
gg

ag
e

0

100

101

102

103

104

#p
oi

nt
s

Vanilla PTv3 PTv3-PPT with ALC (Ours)

Figure C2. Correctly predicted tail class points on ScanNet200
validation set. We compare the number of correctly predicted
points of tail class in ScanNet200 validation sets between PTv3
trained from scratch and the PTv3-PPT trained with our datasets.
With our dataset, Point Transformer gains more ability to detect
rase classes.

D. Detailed process of applying LabelMaker to
ARKitScenes

ARKitScenes is one of the largest indoor 3D scenes dataset.
It consists of 5047 parsable scenes of various size. We con-
sider a scene parsable if the RGB-D trajecotry comes with
associated pose data. Processing these scenes with our im-
proved LabelMaker pipeline requires deliberate engineer-
ing with the following goals: a) Bring the data in to the
format required by LabelMaker [1] b) Robust processing to
not waste compute on failures, c) Improved parallelization
to speed up processing. d) Accurate resource estimation to
prevent waste of compute resources and longer job waiting
time. e) Fast failure identification and results inspection.

Transforming the data LabelMaker [1] requires a spe-
cific data format to be able to reliably process all data. All
trajectories require posed RGB-D data and a denoised 3D
model that is used by Mask3D. ARKitScenes comprises
data of varying resolutions and sampling rates. Depth data
is captured at 256×192 and 60 FPS, while the RGB frames



are recorded at 640× 480 and 30 FPS. Therefore, synchro-
nization is required to process the data with LabelMaker. To
this end, we match each RGB frame with the closest depth
frame in time and we resize the depth frame to RGB frame’s
resolution. Pose data, originally at 10 FPS, is interpolated
using rotation splines to synchronize with each RGB frame.
To obtain a 3D mesh of each scene that can be processed by
Mask3D, we reconstruct the 3D model by fusing the syn-
chornized posed RGB-D data using TSDF fusion and then
extract mesh with marching cube algorithm. We empirically
chose a voxel size of 8mm and a truncation distance of 4cm
for fusion.

Building a scalable pipeline LabelMaker [1] can be de-
composed into individual modules such as the individual
base models, the consensus computation, and the 3D lift-
ing. This modular nature allows to build a scalable pipeline
using popular high-performance computing toolboxes. As
the different base models have different runtimes, we had to
leverage dependency management system that can handle
different dependencies of the pipeline steps. This architec-
ture allows us to effectively leverage large-scale computing
and distribute the processing across many different nodes.

In more detail, we decompose the pipeline into several
jobs (ordered by dependency) for each scene:
1. Preprocessing: Downloading the original scene data,

transforming it into LabelMaker format, and run TSDF
fusion to get the 3D mesh of the scene.

2. Forwarding 2D images or 3D meshes to each base mod-
els: Grounded-SAM, Mask3D, OVSeg, CMX, InternIm-
age. (all jobs depends on step 1.)

3. Getting the consensus label from base models’ labels.
(depends on all elementary jobs in step 2.)

4. Lifting the 2D consensus label into 3D. (depends on step
3.)

5. Rendering the outputs of base models or consensus into
videos for visualization. (depends on steps 2. or 3.)

6. Post-processing, including removing temporary files and
get statistics of each tasks. (depends on all steps above)
Optimizing compute resource scheduling. ARK-

itScenes contains scenes of a wide range of sizes, spanning
from a minimum of 65 frames to a maximum of 13796, and
different parts of the pipeline scale differently with increas-
ing scene size. To figure out the minimum resources re-
quirements, we select 11 scenes of varied sizes uniformly
distributed within the minimum and maximum range and
record their resources usage. While most jobs are not sensi-
tive to scene size and can suffice with a fixed resource allo-
cation, the base models exhibit greater sensitivity to scene
size. We interpolate resource needs with respect to scene
size and summarize the empirical numbers into Table D2.
Through this, we ensure that we request minimal-required
resources, so that we have lowest job waiting time and less
idle compute power.

Task #CPU RAM Time GPU

Download & Prepossessing 2 24G 4h -
Video Rendering 8 32G 30min -
Grounded-SAM 2 12G 6h 3090 ×1
OVSeg 2 8G 8h 3090 ×1
InternImage 2 10G 8h 3090 ×1
Mask3D 8 16G 1h 30min 3090 ×1
OmniData 8 8G 2h 3090 ×1
HHA 18 9G 2h -
CMX 2 8G 3h 3090 ×1

Consensus 16 16G 2h -

Point Lifting 2 72G 4h -

Table D2. Requested resources for each task. We report the av-
erage resources required by the individual steps of the LabelMak-
erv2 pipeline. The required cores, RAM, and GPU time varies
across the different jobs. Through our job scheduling mecha-
nism, we ensure that the required compute is optimially distributed
across all jobs.

Assuring the quality of the individual processings. In
order to assure high-quality labels produced by our im-
proved pipeline, we have built tooling to efficiently check
for failures of the processed scenes. To this end, we store
the logs and statistics of each job and built visualization
tools for this data as well as the intermediate predictions.
This allows us to conveniently browse at scale through the
predictions and identify individual failures.

Failure handling and compute resource optimization.
When doing large-scale processing on a high-performance
compute cluster, a common issue is the failure of jobs. This
can happen for several reasons such as node crashing, un-
expected memory usage, and many more. Therefore, the
processing pipeline has to be robust to these failures. Ad-
ditionally, compute should not be wasted when recovering
from these failures. Therefore, we designed a simple yet ef-
fective strategy for efficiently recovering from job failures.
Before every restart is triggered for a scene, we analyze both
the logs and file system to identify the jobs that have not fin-
ished for this scene. Once these jobs have been identified,
we only resubmit these jobs. This ensures that no compute
resource is used in rerunning completed tasks.

E. Log-Linear Performance Relation in Data
Scaling

E.1. Implementation Details

We optimize the code to deploy each individual piece of
the pipeline of LabelMakerV2 as individual jobs to a GPU
cluster, with SLURM as a dependency manager between the
pipeline pieces. To optimize the overall execution time, it
is therefore important to be able to estimate the processing
time of each piece of the pipeline at the point of job submis-
sion. ARKitScenes contains scenes of a wide range of sizes,
spanning from a minimum of 65 frames to a maximum of



Figure E3. Relation of Validation mIoU against training data
percentage of ARKit LabelMaker. This figure shows the vali-
dation mIoU on ScanNet200 after fine-tuning with respect to the
percentage of ARKit LabelMaker data used in pre-training. This
figure shows a log-linear relationship.

13796, and different parts of the pipeline scale differently
with increasing scene size. To figure out the minimum re-
sources requirements, we select 11 scenes of varied sizes
uniformly distributed within the minimum and maximum
range and record their resources usage. While most jobs are
not sensitive to scene size and can suffice with a fixed re-
source allocation, the base models exhibit greater sensitivity
to scene size. We interpolate resource needs with respect to
scene size and summarize the empirical numbers in the Ap-
pendix. Through this, we ensure that we request minimal-
required resources, so that we have lowest job waiting time
and less idle compute power.

We use a CentOS 7 based SLURM cluster to process all
the data, which is capable of handling task dependencies
and parallel processing. Before submitting jobs for a single
scene, we first check the progress of each job and gener-
ate a SLURM script to submit only those unfinished jobs.
This ensures that no compute resource is used in rerunning
completed tasks.

We employ test time augmentation by forwarding all
models twice, with Mask3D using two different random
seeds and other models being mirror flipped. Following
the practice of LabelMaker [1], we assign equal weights to
each model when calculating the consensus, although these
weights are configurable in our pipeline code. Since we
are primarily interested in the 3D labels that can be used
for pre-training 3D semantic segmentation models, SDFS-
tudio training and rendering are omitted due to their lengthy
processing times. Further, we enhance the pipeline by stor-
ing both the most and second most voted predictions along-
side their respective vote counts. This information is useful
when we want to investigate on the uncertainty across the
base models. We leave the exploitation of this information
as potential future direction of research.

References
[1] Silvan Weder, Hermann Blum, Francis Engelmann, and Marc

Pollefeys. LabelMaker: Automatic Semantic Label Genera-

tion from RGB-D Trajectories. In International Conference
on 3d Vision (3dV), 2024. 1, 2, 3

[2] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xi-
hui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang
Zhao. Point Transformer V3: Simpler, Faster, Stronger. In
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 1

[3] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and
Angela Dai. ScanNet++: A High-Fidelity Dataset of 3D In-
door Scenes. In International Conference on Computer Vision
(ICCV), 2023. 1


