POMP: Physics-consistent Human Motion Prior through Phase Manifolds
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Figure 1. Detailed pipeline for terrain fitting and supplement of dynamic information(e.g. simulated poses and contact impulses)

In the main paper, we present POMP, a novel kinematics-
based framework that synthesizes physically consistent mo-
tions by leveraging phase manifolds to align motion priors
with physics constraints. This supplementary material pro-
vides additional details of our proposed approach: (1). Data
Pre-processing; (2). Details of Character Modeling; (3).
Network Architecture of Kinematic Module; (4). More re-
sults; (5). Discussion . For a complete demonstration of our
model’s capabilities, we direct readers to the supplementary
video.

1. Data Pre-pprocessing

To accurately simulate realistic human-environment inter-
actions, the data preparation involves two key steps, as illus-
trated in Fig. 1. First, we generate terrain geometry compat-
ible with existing motion capture data. Second, we gather
dynamic information, including simulated poses and full-
body contact impulses, within a Unity virtual scene.

To reconstruct the topography of the interactive scene,
we begin by employing the terrain fitting technique de-
scribed in the PFNN [2]. The fitting procedure consists
of two phases. Initially, the motion capture sequence is
divided into individual motion cycles, with each cycle de-
fined as the interval between consecutive right foot liftoffs.
We then identify the optimal terrain segment by minimiz-
ing an error function that takes into account factors such as

foot-ground contact, airborne foot movement and jumping.
Subsequently, a Radial Basis Function (RBF) mesh manip-
ulation method is applied to refine the terrain, ensuring pre-
cise foot placement during contact periods. Once the terrain
is fitted for each motion cycle, the height is sampled along
the trajectory at three points—Ileft, right, and center—each
spaced 25 cm apart. These sampled heights are then com-
bined to create the final height profile for the entire MoCap
sequence. Finally, within the Unity scene, we initialize a
height map with zero values and use the height profile to
gradually “scan” and update the height map, resulting in
the generation of the final terrain data.

Once the terrain is created, MoCap data is imported into
the scene, and a physics simulator is employed to automat-
ically collect ground truth contact impulses, denoted as j i
as well as to generate the corresponding ground truth simu-
lated poses, represented as §;.

2. Details of Character Modeling

Fig. 2 illustrates our articulated rigid-body system, compris-
ing 15 box or capsule limb colliders. This structure en-
velops the character mesh, facilitating comprehensive col-
lision detection and full-body impulse collection during
character-environment interactions. The system employs
Unity’s configurable joints for inter-collider connections,
which serve dual purposes: passive response to external
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Figure 2. Character modeling. The articulated rigid-body sys-
tem is composed of 15 limb colliders, each interconnected through
configurable joints. These joints impose constraints on the degrees
of freedom (DoF) of each limb, while simultaneously applying
driving forces to realize movement.

forces and active force application through simulated joint
motors. Additionally, we can constrain the joints’ degrees
of freedom (DoF) to enhance the realism of the articulated
body’s movements, making them more human-like.

3. Network Architecture of Kinematic Module

The kinematic module consists of an ortho-MoE-based en-
coder and a diffusion-based decoder. As illustrated in Fig. 3,
we delve into the detailed architectures of ortho-MoE-based
encoder and the noise prediction network in the diffusion
reverse step.

Ortho-MoE-based encoder. The encoder consists of two
components: a 3-layer Ortho-MoE network FE,,, and a gat-
ing network E,. E,, implements a Mixture of Experts
(MOoE) architecture with eight parallel MLP branches, in-
corporating layer normalization (LN) and Exponential Lin-
ear Unit (ELU) activation layers. On the other hand, F, cal-
culates the blending weights for these experts using multi-
layer perceptron (MLP) layers with ELU and softmax acti-
vation layers. Additionally, to achieve disentanglement of
the principle phase components, we further enforce orthog-
onality between every pair of principle components in the
final MoE layer by imposing the constraint (w;,w;) = 0
for ¢ = j, where (-, -) signifies the dot product.

Noise prediction network in the diffusion reverse step.
According to Eq. (4) in the main paper, we need to build a
noise prediction network for the diffusion reverse step. We

Gi-1Gi-1 9i td £ ki j; Pi-1 T
MLPELU |x2 Pos
8-branch MoE,LN,ELU Encoding
MLP, softmax

0'
W, o {a}is—

RO

8-branch MoE,LN,ELU

w1, O {1

LN,MLP,SiLU
W P

8-branch MoE,LN,ELU
constrained by 8 8 €9\ 27, Ti, W,
twiwg) =0 {Wetee1 O {oktio (er i)

w
(a) Ortho-MoE-based Encoder

(b) Noise Prediction Network in the
Diffusion Reverse Step

Figure 3. Network architecture of kinematic module. Our artic-
ulated rigid-body system is composed of 15 limb colliders, which
are connected by configurable joints. These configurable joints
apply drive forces and constrain the DoF of each joint.

start by using MLP layers to project z,, and w into sep-
arate high-dimensional feature spaces. Subsequently, we
expand the feature of w to a length of 8, enabling the fea-
ture concatenation of z,, and w. This ensures that each
expert component of z,, can effectively incorporate phase
motion features during the denoising process in the phase
domain. To allow the following residual blocks to utilize
information about the iteration order, we transform 7,, into
positional embeddings. Each residual block includes a 1D
convolutional layer and an MLP layer, which extract serial
and spatial features, respectively. To prevent the vanishing
gradient problem, we also incorporate skip connections [1].

4. More Results

In this section, we present additional visualization results
showcasing POMP’s responses to dynamic changes across
various motion types.

Bump reactions. Fig. 4 illustrates POMP’s varied re-
sponses to different impact levels (slight/moderate/heavy).
The synergy between the kinematics and dynamics mod-
ules enables POMP to react both actively and passively to
forces of varying magnitudes and directions. When an im-
pact is substantial enough to displace the center of mass,
the kinematics module actively generates a new target pose,
producing a compensatory driving force to restore balance.
Conversely, minor impacts do not alter the kinematics mod-
ule’s target pose, allowing affected limbs to gradually re-
sume their original motion under the influence of the initial
driving force. Additional details are available in the supple-
mentary video.

Target tracking. POMP performs target tracking through
a two-step process. Initially, it defines the target position for



Figure 4. Bump reaction. POMP can perform both active and
passive responses to impacts of varying magnitudes and directions.

Figure 5. Target tracking. POMP can handle various target track-
ing scenarios, including tracking a single target with one end ef-
fector, two targets with two effectors, or a single target with both
effectors.

Models | train success T test success T
POMP (human-terrain) 100% 94.3 %
POMP-wo-PEM 100% 71.6%

Table 1. Success rate on the human-terrain interaction dataset.

an end effector (e.g., left or right hand). Then, it employs
inverse dynamics to compute the external force f required
to move the joint to the desired location. This force f is
subsequently applied to the target joint, enabling forward
dynamics. POMP supports various target tracking scenar-
ios as illustrated in Fig. 5. These include tracking a single
target with one end effector, two targets with two end effec-
tors, or a single target with two effectors. For a more com-
prehensive demonstration, please refer to the supplementary
video.

Human-terrain Interactions. The results presented
in Figs. 6 to 8 demonstrate POMP’s capability to generate
physically plausible locomotion patterns across diverse

Figure 6. Obstacle crossing. POMP can manage obstacle cross-
ing of all types, from low barriers to high walls.

Figure 7. Complex terrain traversal. POMP facilitates smooth
and continuous motion transitions over diverse terrains.

Figure 8. Stair ascent and descent. POMP effectively addresses
the issue of model penetration, a common challenge encountered
during stair ascent and descent.

challenging terrains, including obstacle crossing, complex
terrain traversal and stair ascent and descent. Additionally,
as demonstrated in Fig. 9, the kinematic module effectively
learns diverse motion priors, enabling POMP to generalize
across a wide range of motion patterns over a large-scale
dataset. We further conduct the ablation study on the
phase encoding module (PEM), as detailed in Tab. 1. The
quantitative analysis reveals that the PEM significantly
enhances POMP’s generalization performance, particularly
in complex human-scene interaction scenarios.

Comparative performance. In the supplementary video,
we further provide qualitative comparisons between POMP
and other methods: the kinematic-based PFNN, and the
physics-based PhysicsVAE, DROP, and MaskedMimic [3—
5]. Extensive evaluations demonstrate the effectiveness of
POMP across various contents, terrains and physical inter-
actions.



Figure 9. Diverse motion priors. Due to the diverse motion pri-
ors learned by the kinematic module, POMP is capable of actively
generating a wide range of realistic motions across various inter-
active scenarios

5. Discussion

Limitation. Despite the significant progress achieved by
our current work, POMP, several limitations remain, offer-
ing directions for future improvement. First, the model
lacks a diverse range of dynamic features. While it suc-
cessfully captures full-body contact impulses, other criti-
cal dynamic elements, such as joint torques and reaction
forces, are not yet collected. Incorporating these additional
features could provide deeper insights into the underlying
mechanisms of human motion production, thereby enabling
kinematic-based models to generate more realistic move-
ments during complex interactions. Second, POMP does
not currently integrate tasked-based motion controllers. The
present approach primarily aims to bridge the gap between
kinematic motion priors and physical constraints, demon-
strating its potential to generalize across various motion
patterns. Future research will focus on developing a mul-
timodal motion controller that can adapt character move-
ments based on task requirements, current states, and terrain
topology. These limitations highlight areas for further in-
vestigation, which could enhance both the realism and ver-
satility of POMP.
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