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A. Synthetic Data Consturction
A.1. Construction Pipeline
In this section, we describe the detailed pipeline for con-
structing synthetic data. First, we set up a realistic virtual
scene featuring a fixed camera, a wood-textured floor, and
indoor HDRI images to simulate natural indoor environ-
ments, including floor texture and lighting. Next, we sample
an object from a filtered subset of 2,000 objects from Ob-
javerse [1]. The object is then normalized to a height of 1
unit and placed on the floor.

We then generate a random trajectory by defining a curve
with a randomly initialized starting point, rotational angle,
and length. The starting points of the trajectories are ran-
domly sampled within a circle of radius 1 unit, centered at
the origin (0, 0). The initial orientation of the object is set at
a random angle between 0° and 90° relative to the positive
x-axis. Two types of trajectory templates are defined: i) a
circular trajectory without any turning points, and ii) an ‘S’-
shaped trajectory with one turning point. For both trajectory
types, the radius of rotation is uniformly sampled between
1 and 1.5 units, and the corresponding rotation angle is set
between 90° and 180°. The object is animated to follow this
trajectory over 200 steps while maintaining a fixed rotation
center to simulate rotational motion. The movements are
rendered at 5 fps with 32 keyframes using Blender’s Cy-
cles engine, with each object sampled between 1 ∼ 8 times.
Fig. A2 presents visualizations of the animated data with
various rotational trajectories and objects.

A.2. Ablation Study on Data scale
To ensure sufficient diversity and robustness for pretrain-
ing, we carefully evaluated our dataset of 2,000 objects with
sampled videos, determining that this amount approaches
the model’s capacity limit, as shown in Tab. A1 and Fig. A1.

Table A1. Comparison results on the synthetic validation set of
our designed ablation studies on synthetic data scale during the
pretraining stage.

Vids Objs
Synthetic-Val

ObjMC↓ FID ↓ FVD↓
1,000 200 0.1987 48.05 190.35
2,000 400 0.2065 47.19 187.12
5,000 1,000 0.1960 46.62 185.47

10,000 2,000 0.1895 46.34 186.01

Ablation Study on syntehtic data scale. To ensure effec-
tive pretraining as a pose-aware 3D understanding injection,
it is critical to collect a sufficient amount of data for ro-
bust model learning. To investigate the optimal data size for

Figure A1. Visualization of objMC and FVD with scaling diver-
sity.

two-stage pose-aware pretraining, we conducted an ablation
study examining the impact of the number of training videos
and the corresponding rendered objects. Specifically, we
extended the number of videos from 1,000 to 10,000, scal-
ing the quantity of rendered objects accordingly. As pre-
sented in Tab. A1, the model demonstrates a reliable ro-
tational understanding with 5,000 or more training videos,
whereas it struggles to learn diverse rotational patterns with
only 1,000 or 2,000 videos. Furthermore, the performance
difference between 5,000 and 10,000 videos is negligible,
suggesting that 5,000 training videos are sufficient for the
3D-aware pretraining stage. Collecting data beyond 10,000
videos appears to offer no significant advantage and is both
unnecessary and inefficient.

Additionally, as demonstrated in Fig. A1, the trained
model benefits from increased data diversity, where we
shortened training steps due to time constraints.

B. More Visualization Results

In this section, we provide more visualization results from
our model in Fig. A3, including different rotational trajec-
tories for single-object and multiple-object controlling, and
the overall camera controlling.

It can be observed that our model generates both precise
rotational and translational motion following trajectories for
various objects and also maintains superior object entity and
video quality with potential wide-range motions.

C. Visualization Results for Ablation Studies

In this section, we present additional visualization results
(Figs. A4 and A5) to complement the metric-based experi-
ments for our ablation studies discussed in the main paper
(Sec. 5.2), including the ablation performance on open-



Figure A2. Visualization for several animated samples from our trajectory augmented synthetic dataset.

domain videos and the pretraining stage using synthetic
data.

C.1. Performance on Open-Domain Dataset
Fig. A4 shows ablation results on the open-domain dataset.
The model trained without two-stage pretraining exhibits
poor trajectory-following capability in later frames, demon-
strating a lack of temporal consistency. For the model
trained without bounding box supervision (‘No bbox
stage’), the pose changes in the generated rotational mo-
tions under wide-range motion scenarios are notably less
pronounced compared to the final model. Additionally, re-
moving the spatial enhancement loss during training leads
to a collapse in object identity, resulting in poor visual co-
herence. While the model trained without the camera disen-
tanglement module retains comparable pose-aware genera-
tion capability for rotational and accurate motions, it suffers
from misaligned camera perspectives and increased insta-
bility during inference, leading to frequent camera move-
ments that degrade the overall quality.

C.2. Performance on Synthetic Dataset
We further present additional visualizations to support the
ablation study conducted during our designed pretraining
stage. As demonstrated in Fig. A5, the model trained
without spatial enhancement loss exhibits a notable degra-
dation in trajectory-following accuracy. Additionally, the

model that omits first-stage pretraining with 3D bounding
boxes experiences significant object collapse in the final few
frames, accompanied by corresponding worse motion accu-
racy.

D. Implementation Details

Training details. Our full training pipeline includes three
stages: two-stage pose-aware pre-training on a synthetic
dataset and final-stage camera-disentangled finetuning on
open-domain videos. All training is deployed on a single
A100, requiring about 40G memory usage for the batch size
of 1. Each stage of the pre-training took 5k steps using an
AdamW optimizer with a 1e-5 learning rate. Our final fine-
tuning took another 10k steps.
Real-world video annotation. To annotate the real-world
video with trajectory and camera poses, we exploit two sep-
arate steps. For the trajectory, following DragAnything [4],
we compute the center locations of objects based on their
corresponding instance masks in our selected dataset. We
then employ CoTracker2 [2] to extract the motion trajec-
tories of these center points, which serve as conditional
input. To ensure consistency between synthetic and real-
world data, the extracted trajectories are formatted as dis-
crete pixel space points as in our synthetic dataset. As for
the camera pose, we extract camera parameters from videos
through DROID-SLAM [3].



Figure A3. More visualization results of our PoseTraj facing various rotational trajectories for single-object and multiple-object, and overall
camera controlling.

Trajectory sampler. For enhanced robustness during infer-
ence, we modify the original trajectory at the object center
by sampling trajectories more sparsely within the projected
2D bounding boxes, with n sampled dragging initial points
(n ≤ 8). These sampled points are dragged along the origi-
nal trajectory’s motion path, and their movements are visu-
alized as images for further training.

E. Discussion

E.1. Why Using 3D Poses as Supervision Signal

In the context of 3D-aligned video generation, various sig-
nals, such as depth or depth heatmaps, encode potential 3D
information. Compared to using depth as an internal super-
vision signal, 3D bounding boxes provide explicit object-

level pose and approximate location, significantly improv-
ing object appearance refinement. Another possible ap-
proach is to introduce an additional depth dimension dur-
ing generation. However, unlike 2D object localization, ac-
curately estimating depth during inference remains highly
challenging, often resulting in severe mismatches at the in-
ference stage.

E.2. Limitation and Future Work

Through our experiments, we identified three primary limi-
tations of the current model:
• Limited capability for wide-range rotations of dy-

namic objects. While the model can generate stable and
accurate pose-aware rotational motions for static objects
such as cars, planes, and horses, it struggles with wide-



Figure A4. Visualization for generated results of ablation study on open-domain videos.

range rotations for dynamic objects, such as humans. This
limitation primarily stems from the lack of rotationally
dynamic objects, such as people or animals, in the train-
ing dataset. A potential solution is to incorporate addi-
tional animatable objects, such as walking bears or run-
ning avatars, into the synthetic dataset during pretraining.

• Insufficient camera control capacity. Despite employ-
ing a camera-disentanglement module to enhance object-
centric trajectory understanding, the current module fails
to provide precise camera control. This issue could be
addressed by incorporating large-scale camera-specific
datasets, such as RealEstate10K [5], for further train-
ing or by directly integrating precisely controlled moving
cameras into the synthetic dataset during the pretraining
phase.

• Blurry background in large motions. Our model may
generate a blurry background and this problem comes
from the following two aspects. Firstly, the base SVD
model struggles to maintain a consistent background
when handling large motions. Secondly and most impor-
tantly, while our model improves trajectory-matching ac-
curacy for large motions, the inherent blurriness in large
movements from training data negatively impacts over-
all performance. This problem can be mitigated by fine-
tuning on high-quality datasets.
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Figure A5. Visualization for the generated results of ablation study on the synthetic dataset.


