RoboBrain: A Unified Brain Model for Robotic Manipulation
from Abstract to Concrete
— Supplementary Material —

This supplementary material provides more details of
the proposed method and experiment results that are omit-
ted from the manuscript due to the page limit. Sec. A
presents additional details of the models and training strate-
gies. Sec. B presents details of training dataset. Sec. C
complements more experiment results and analysis. Sec. D
shows more visualization results to prove the effectiveness
of RoboBrain. Sec. E introduces more details about the con-
struction of ShareRobot dataset. Sec. F discusses potential
future research directions for RoboBrain.

A. Details of Models and Training

Model Setting. RoboBrain is built upon the LLaVA [27]
framework and consists of three main components: the vi-
sual encoder, projector, and large language model (LLM).

For the visual encoder, we utilized the SigLIP [59]
model, specifically the siglip-so400m-patch14-384, which
is pre-trained on WebLi [8] at a resolution of 384x384. The
SigL.IP model improves upon traditional CLIP [14, 41] ar-
chitectures by employing a sigmoid loss function that op-
erates solely on image-text pairs, eliminating the need for
global normalization of pairwise similarities. This enhance-
ment allows for more efficient scaling of batch sizes while
maintaining performance, even at smaller scales. Sigl.IP
has 27 hidden layers and processes input images using
patches of size 14x14, resulting in 729 visual tokens per
image. The projector consists of a two-layer MLP [25] that
projects the visual tokens obtained from the visual encoder
to the dimensions of the text embeddings. For the LLM,
we adopted the Qwen2.5-7B-Instruct [49] model, which is
a state-of-the-art open-source LLM that is part of the latest
Qwen series [3]. It features 28 hidden layers and supports
long-context inputs of up to 128K tokens, providing multi-
lingual capabilities across more than 29 languages.

In Stage 4, we introduced LoRA [15] to train Robo-
Brain, enabling it to acquire affordance perception and tra-
jectory prediction capabilities. LoRA allows for parameter-
efficient fine-tuning of large models by adding low-rank pa-
rameter matrices to existing layers. We incorporated LoRA
modules with a rank of 64 into the feed-forward network
layers of both the Projector and the LLM, freezing all pa-
rameters except those of the LORA modules during training.

Training Setting. In the main text of the paper, we em-
ployed a staged training strategy, with complete settings
presented in Tab. 1. We primarily referenced the training
strategy of LLaVA-Onevision [23], a state-of-the-art mul-
timodal large language model, and built upon this founda-

Figure 1. The distribution of the entire training dataset.

tion to expand the robotic training phase. During the entire
training phase, we conducted all experiments on a cluster of
servers, each equipped with 8 xA800 GPUs.

B. Details of Training Dataset

In the main body of the paper, we emphasize the impor-

tance of the training data and the proportion of robotic data.

In this section, we will provide a detailed overview of the

training data and its sources. The distribution of the entire

training dataset is illustrated in Fig. 1.

* LCS-558K is a subset of the LAION/CC/SBU dataset
[5, 42], specifically designed as the LLaVA Visual In-
struct Pretrain [27] Dataset. This dataset has been fil-
tered to ensure a balanced distribution of concept cover-
age, providing diverse and representative visual content.
The primary purpose of LCS-558K is to facilitate align-
ment between the visual encoder and the LLM, enabling
the LLM to understand visual information.

* Image-4M comprises 8 data sources, including 3 from
the LLaVA-Recap series [22]: BLIP558K, COCO118K,
and CC3M, as well as UReader [57], Instruct Azure
DC [22], Evol-Instruct [6], and SynthDog [19] We
utilized the download links provided by the LLaVA-
OneVision team for the data acquisition.

* SI-3.2M' [23] consists of 3.2 million samples, carefully

Due to the unavailability of certain datasets, the actual data used



Table 1. Detailed configuration for each training stage of the RoboBrain.

Stage-1 ‘ Stage-1.5 ‘ Stage-2 ‘ Stage-3 Stage-4
| | Single-Image |  OneVision | A-LoRA T-LoRA
_§ Resolution 384 Max 384 x{2x2} Max 384 x{6x6} Max 384 x{6x6} Max 384 x{6x6} Max 384 x{6x6} Max 384 x{6x6}
£ #Tokens 729 Max 729x5 Max 729x37 Max 729x37 Max 729x37 Max 729x37 Max 729x37
3 Trainable Projector Full Model Full Model Full Model Full Model A-LoRA T-LoRA
§ #Tunable Parameters 17.0M 8.0B 8.0B 8.0B 8.0B 28.0M 28.0M
Per-device Batch Size 8 2 1 1 1 4 4
Gradient Accumulation 1 2 2 2 2 2 2
LR: ¥yt - 2 x107¢ 2 %1076 2 %1076 2 x107¢ 2 %1076 2 x107¢
LR: {Oproj., dLLM, PLorA } 1x1073 1 x107° 1 x107° 1 x107° 1 x107° 1 x107° 1 x107°
Epoch 1 1 1 1 1 1 1
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
-g Deepspeed Zero3 Zero3 Zero3 Zero3 Zero3 Zero2 Zero2
2 Weight Decay 0 0 0 0 0 0 0
Warmup Ratio 0.03 0.03 0.03 0.03 0.03 0.03 0.03
LR Schedule cosine cosine cosine cosine cosine cosine cosine
Projector Type mlp2x_gelu mlp2x_gelu mlp2x_gelu mlp2x_gelu mlp2x_gelu mlp2x_gelu mlp2x_gelu
Vision Select Layer -2 -2 -2 -2 -2 -2 -2
Patch Merge Type spatial_unpad spatial_unpad spatial_unpad spatial_unpad spatial_unpad spatial_unpad spatial_unpad
Frames Upbound - - - 32 32 32 32
Max Seq Length 8192 32768 32768 32768 32768 4096 4096
GPU Nums 16*8 16*8 20%8 20*8 22#8 4*8 4*8
curated to support multimodal learning. It includes sub- * ScanView-318K totals 318K samples, which inte-

sets from existing datasets such as Cambrian [50], Caul-
dron [22], and UReader [57], which were subjected to
cleaning and re-annotation to ensure data quality. Addi-
tionally, it incorporates single-image data from sources
like AI2D [18] and OKVQA [37], alongside a newly
compiled single-image collection designed to achieve a
balanced and diverse dataset.

OV-1.6M” [23] comprises 1.6 million samples, which
includes approximately 800K high-quality samples re-
sampled from earlier SI-3.2M datasets with a data replay
strategy, ensuring improved data reliability and relevance.
Additionally, the dataset incorporates M4-Instruct data to
enrich instructional learning tasks. A significant compo-
nent of OV-1.6M is its video data, which has been re-
leased alongside LLaVA-video data. The video subset
used in the dataset is specifically aligned with the pre-
vious annotation format, providing a diverse multimodal
resource for advancing vision-language learning.
RoboVQA-800K [43] consists of realistic data gathered
from various user requests, utilizing different embodi-
ments including robots, humans, and humans equipped
with grasping tools. The dataset features 5,246 long-
horizon episodes and 92,948 medium-horizon episodes
of robotic tasks, with each episode accompanied by cor-
responding image and text prompt inputs. The primary
purpose of RoboVQA-800K is to enhance RoboBrain’s
reasoning capabilities in robotic-related scenarios.

amounts to 3.1M.

2Due to the vague descriptions and missing key information regarding

dataset filtering in the original paper, we ended up using 2.4M data.

grates data from several high-quality sources, includ-
ing MMScan-224K [34], 3RScan-43K [52], ScanQA-
25K [2], and SQA3D-26K [35], each contributing unique
strengths. MMScan-224K provides multimodal scene
data with detailed annotations, such as object segmen-
tation and textual descriptions. 3RScan-43K offers 3D
reconstructions and semantic annotation. ScanQA-25K
includes question-answer pairs based on 3D scanned en-
vironments. SQA3D-26K focuses on spatial question an-
swering. Together, these datasets provide diverse scene-
scanning image data, long video sequences, and high-
resolution samples, equipping models with fine-grained
environmental perception and reasoning abilities.

C. Complementary Experiments

In this section, we present the complete experiments and
results that are omitted from the manuscript due to page
limitations. This includes an exploration of the impact of
incorporating ShareRobot on training, the effects of vary-
ing proportions of robotic data in the training dataset, and
more comprehensive results comparing RoboBrain with the
baselines on both general and robotic benchmarks.

Additionally, we explore the impact of different archi-

tectures and pre-trained MLLMs, as well as different LLM
backbones on our experimental results. We also conduct ab-
lation studies at various stages to meticulously analyze the
contributions of each stage to overall performance.



Table 2. Performance comparison on multiple general benchmarks.

Dataset Split RoboBrain (Ours) GPT-4V [1] LLaVA-OV-7B [25] InternVL2-8B[9] Qwen2-VL-7B[54] GPT-40 [40]
A12D[18] test 82.03 78.2 81.4 83.8 - 94.2
ChartQA[38] test 80.48 78.5 80 83.3 83 85.7
DocVQA[39] test 88 38.4 87.5 91.6 94.5 92.8
TextVQA[44] val 75.85 - 71.07 77.4 84.3 -
MMMU[58] val 49 56.8 48.8 51.8 54.1 69.1
MMStar[7] test 61.23 57.1 61.7 61.5 60.7 63.9
OCRBench[31] - 677 656 697 794 845 805
RealWorldQA[55]  test 68.89 61.4 66.3 64.4 70.1 58.6
SeedBench[21] image 71.03 49.9 75.4 76.2 - 76.2
MMbench[32] en-dev 81.52 81.3 83.2 - - 83.4
MMbench[32] en-test 80.44 75 80.8 81.7 83

MME[11] test 2084 1926 1998 2210 2327

C.1. More Results on General Benchmarks

To evaluate performance on general tasks in real-world sce-
narios, as is commonly done with MLLMs [1, 9, 25, 40, 54],
we conducted experiments using a diverse set of image
benchmarks summarized in Table 2. We leveraged the
comprehensive evaluation toolkit, LMMs-Eval[61, 63], to
evaluate RoboBrain’s performance on general benchmarks.
These benchmarks are categorized into three classes:

¢ Chart, Diagram, and Document Understanding. As
key visual formats for structured OCR data, benchmarks
such as AI2D [18], ChartQA [38], DocVQA [39], and
OCRBench [31] were utilized. Open-source models like
InternVL2-8B [9] and LLAVA-OV-7B [25] have demon-
strated comparable performance to closed-source mod-
els such as GPT-4V [1]. For RoboBrain, despite being
optimized primarily for multidimensional robotic tasks,
it surpasses LLAVA-OV-7B [25] and GPT-4V [I1] on
these benchmarks, achieving a significant improvement
in structured OCR tasks, with the only exceptions be-
ing DocVQA [39], where it performs slightly lower than
GPT-4V [1], and OCRBench [31], where it falls slightly
behind LLAVA-OV-7B [25].

* Visual Perception and Multi-domain Reasoning. This
category focuses on complex visual perception and mul-
tidisciplinary reasoning tasks.  Benchmarks for vi-
sual perception include MMStar [7], MMBench [32],
and MME [11], while reasoning benchmarks include
MMMU [58] and SeedBench [21]. RoboBrain demon-
strates comparable performance to GPT-4V [1] and
LLAVA-OV-7B [25] across multiple benchmarks.

* Real-world Understanding and Interaction. Evaluat-
ing MLLMs [1, 9, 25, 40, 54] as general-purpose assis-
tants in real-world settings is crucial, as these scenarios
extend beyond controlled environments. For this, the Re-
alworldQA [55] benchmark was utilized. Results indicate
that RoboBrain not only outperforms open-source models

like LLAVA-OV-7B [25] and InternVL2-8B [9], but also
exceeds closed-source models such as GPT-4V [1] and
GPT-40 [40], showcasing its extensive knowledge base
and strong generalization capabilities.

C.2. More Results on Robotic Benchmarks.

To evaluate RoboBrain’s performance on robotic capabil-
ities in real-world scenarios, we selected RoboVQA [43],
OpenEQA [36], and the test set of ShareRobot, extracted
from the proposed ShareRobot dataset, as robotic bench-
marks for multi-dimensional assessment, as shown in Ta-
ble 3. The chosen baselines include MLLMs such as GPT-
4V [1], LLaVA-OV-7B [25], and Qwen2-VL-7B [54], as
well as robotic models like RoboMamba [28]. Detailed de-
scriptions of the three selected robotic benchmarks and the
analysis of each results are provided below:

* RoboVQA [43] provides a robotics VQA benchmark and
a long-horizon planning benchmark with an interven-
tion mechanism on real robots. Specifically, this bench-
mark includes 18,248 video-text pairs designed from 100
long-horizon episodes for various robotic VQA tasks,
including planning, planning with context, planning re-
maining steps, future prediction, generative affordance,
past description, success (positive/negative), and discrim-
inative affordance (positive/negative). Similar to Robo-
Mamba [28], we utilized BLEU-1~BLEU-4 to evaluate
the average performance across all tasks. According to
the evaluation results, our proposed model, RoboBrain,
outperforms all baselines, achieving approximately 30%
higher performance than the second-best model.

* OpenEQA [36] provides a robotics VQA benchmark
with over 1,600 high-quality human-generated questions
drawn from more than 180 real-world scenes, targeting
the task of Embodied Question Answering (EQA) for en-
vironment understanding. For fairness, we evaluated all
models using the prompt templates and the LLM-Score



Table 3. Performance comparison on RoboVQA, OpenEQA and ShareRobot Benchmarks.

Dataset Split / Metric RoboBrain (Ours) GPT-4V [1] LLaVA-OV-7B[25] RoboMamba [28] Qwen2-VL-7B [54]
BLEU1 72.05 32.23 38.12 54.9 33.22
RoboVQA[43] BLEU2 65.35 26.51 33.56 44.2 26.11
BLEU3 59.39 24.65 31.76 39.5 20.98
BLEU4 55.05 23.94 30.97 36.3 17.37
OBJECT-STATE-RECOGNITION 70.4 63.2 72.02 - 72.06
OBJECT-RECOGNITION 49.54 43.4 51.73 - 61.91
FUNCTIONAL-REASONING 57.14 57.4 55.53 - 54.23
OpenEQA[36] SPATIAL-UNDERSTANDING 46.46 33.6 48.98 - 50.39
ATTRIBUTE-RECOGNITION 66.7 57.2 75.52 - 73.88
WORLD-KNOWLEDGE 53.12 50.7 56.46 - 57.3
OBJECT-LOCALIZATION 47.45 42 45.25 - 47.29
DISCRIMINATIVE 99.02 57.9 - 76.47
FUTURE-PREDICTION 72.92 13.1 - 8.04
GENERATIVE 32.43 5.44 - 4.63
ShareRobot (Eval)  PAST-DESCRIPTION 37.07 44 - 13.65
PLANNING-REMAINING 71.29 24.5 - 7.56
PLANNING-TASK 52.43 25 - 36.34
PLANNING-WITH 91.95 44.25 - 45.12
SUCCESS 61.7 58.5 - 54.63

metric provided by OpenEQA [36]. Based on the eval-
uation results, our proposed model, RoboBrain, outper-
forms GPT-4V [1] overall and achieves comparable per-
formance to other baselines. In the future, we plan to fur-
ther enhance RoboBrain’s spatial intelligence to improve
its generalization across scenes.

ShareRobot (Eval) provides a cross-scene and cross-
embodiment robotics benchmark consisting of 2,050
VQA pairs, drawn from 102 diverse scenes (e.g., bed-
room, laboratory, kitchen, office) and covering 12 differ-
ent robot bodies. Similar to RoboVQA [43], we cate-
gorized various robotic VQA tasks into planning, plan-
ning with context, planning remaining steps, future pre-
diction, generative affordance, past description, success
(positive/negative), and discriminative affordance (posi-
tive/negative). Unlike RoboVQA benchmark [43], we uti-
lized GPT-40 [40] to score the evaluation results instead
of BLEU metrics for each task, aiming for more accu-
rate performance assessment. Based on the results, our
proposed model, RoboBrain, outperforms all baselines,
demonstrating its exceptional planning capabilities across
diverse scenes and embodiments.

C.3. Effectiveness of ShareRobot

In this subsection, we investigate the effectiveness of the
proposed ShareRobot dataset for training RoboBrain. We
maintain the ratio of robotic data to general data used in
the main body of the paper, approximately 4:6. Based on

the original data source proportions, we randomly sampled
200K samples, which include:

* Exp A consists of 40% robotic data, with 20% sourced
from ShareRobot and 20% from other robotic sources,
along with 60% general data.

* Exp B consists of 40% robotic data, excluding ShareR-
obot, with the same other robotic data resampled as in
Experiment A, resulting in a total of 40%. It also includes
60% general data, which is identical to that of Exp A.

We conducted a complete epoch for all the experiments
mentioned above. The results are presented in Tab 4.
As shown in the table, the inclusion of ShareRobot data
enhances the model’s performance compared to scenarios
without ShareRobot. This highlights ShareRobot’s key role
in enhancing RoboBrain’s planning capabilities.

C.4. Effectiveness of Robot Data Proportion

In this subsection, we investigate the effectiveness of the
ratio of robotic data (including ShareRobot) to general data
used in training RoboBrain. We maintain a constant total
training dataset size of 200K while varying the sampling
proportions of robotic and general data. The configurations
are as follows:

* Exp C utilizes a ratio of 3:7, comprising 30% robotic data
and 70% general data.

* Exp D utilizes a ratio of 4:6, comprising 40% robotic data
and 60% general data, same to Exp A.

* Exp E utilizes a ratio of 5:5, with 50% robotic data and



Table 4. EExperimental results demonstrating the effectiveness of different task types. Type-1 refers to Chart, Diagram, and Document
Understanding; Type-2 pertains to Visual Perception and Multi-domain Reasoning; Type-3 encompasses Real-world Understanding and

Interaction. For detailed task descriptions, please refer to C.1.

E ‘ General Data (%) ‘ Robotic Data (%) ‘ General Benchmarks ‘ Robotic Benchmarks ‘
xp. Name Average
‘ OneVision ‘ ShareRobot Others ‘ Type-1 Type-2 Type-3 ‘ RoboVQA[43] OpenEQA[36] ShareRobot ‘
EXP A 60% 20% 20% 62.44 71.98 70.33 48.29 58.74 63.11 62.48
EXPB 60% 0% 40% 62.36 71.38 66.01 49.20 57.96 27.03 55.66
EXP C 70% 15% 15% 62.73 72.19 68.10 45.96 56.59 61.73 61.22
EXPD 60% 20% 20% 62.44 71.98 70.33 48.29 58.74 63.11 62.48
EXPE 50% 25% 25% 62.28 71.25 66.54 49.34 58.76 63.35 61.92
EXPF 40% 30% 30% 62.39 71.61 68.37 49.22 56.24 64.57 62.07
EXP G 30% 35% 35% 62.69 71.92 69.54 47.74 55.72 65.22 62.14

Table 5. Additional Experimental Results. “SFT Data (G:R)”
indicates the ratio of training data for fine-tuning MLLMs, where
“G” represents general VQA data and “R” denotes robot data (with
half being ShareRobot). The total dataset size is 1.47M.

Model SFT Data(G:R) ‘ RoboVQA ShareRobot ‘ MME MMMU
om0 | ER Lo [ ne
ooesim G| He 30 B 2N
OpenVLA7B = kD T
TN A L

6:0 21.40 25.06 1529 46.40
SR T B (/A O -
LLaVALS-Vicuna 64 50.40 5142 1650 3151
w0 | W3 e | B

50% general data.

Exp F utilizes a ratio of 6:4, featuring 60% robotic data
and 40% general data.

Exp G utilizes a ratio of 7:3, containing 70% robotic data
and 30% general data.

We conducted a complete epoch for all the experiments
mentioned above. The results are presented in Tab 4. As
shown in the table, a 4:6 ratio of robotic data is an effec-
tive choice for training, balancing performance on both the
robotic and general benchmarks.

C.5. Different Architecture and MLLMs

To validate the effectiveness of different architecture and
pre-trained MLLMs and training data in the stage 3 training
setup, we selected LLaVA-OV-7B [23], OpenVLA-7B [20],
and Qwen2VL-7B [54], each representing a distinct ar-
chitecture among MLLMs, and conducted supervised fine-
tuning (SFT) using the same proportion of training data de-
scribed in the main text. As shown in Tab. 5 (a), the results
demonstrated that incorporating ShareRobot can significant
performance improvements. For unaligned MLLMs such as
LLaVA 1.5 [26] and OpenVLA, we first aligned the MLP

Table 6. Additional Evaluation Results. “S1.5” refers to Stage 1.5,
and this notation applies similarly to other stages.

Stage [ RoboVQA ShareRobot | MME MMMU AffordanceT  Trajectoryl.

S1.5
S2-si
S2-ov
S3
S4-A
S4-T

2.60
28.90
31.81
62.96
62.96
62.96

9.81
13.31
34.84
65.05
65.05
65.05

1406
2110
2083
2084
2084
2084

46.00
50.76
49.95
49.00
49.00
49.00

0.00
3.11
8.50
7.14
27.1

1.00
1.00
1.00
1.00

0.09

using BLIP-558k [22] before fine-tuning. In contrast, other
models that already have aligned vision encoder and LLM
were directly fine-tuned.

C.6. Different LLM Backbones

To demonstrate the effectiveness of different LLM back-
bones when fine-tuned on the ShareRobot dataset, we con-
ducted experiments using four distinct LLMs [3, 10, 17, 51].
These models were fine-tuned using the ShareRobot data,
and the experimental results are summarized in Tab. 5 (b).
The findings indicate that different LLMs benefit from the
ShareRobot data.

C.7. Ablation Studies of Different Stages

We present the evaluation results for each stage in Tab. 6.
The results demonstrate that staged training from stage 1
to stage 3 consistently and effectively improves the model’s
planning performance, while stage 4 enhances the model’s
affordance and trajectory capabilities.

D. More Qualitative Results

In this section, we provide additional visual results for plan-
ning, affordance perception, and trajectory prediction. This
includes the presentation of both positive and negative sam-
ples, as well as further analysis.

D.1. Visualization on Planning

Here, we present additional embodied planning for robotic
tasks generated by RoboBrain, as shown in Fig. 2. In this



figure, we demonstrate the planning results of RoboBrain
for four distinct robotic manipulation tasks: Water plants”,
”Put the pot in the drawer”, ”Cluster blocks of the same
color into different corners”, and ’Clean the desk”, where
the first three are categorized as good cases, and the last one
as a bad case. Additionally, the model provides a rationale
and detailed explanation for each step of the planning pro-
cess across all four cases.

From the first three planning cases, it is evident that
RoboBrain effectively utilizes environmental information
and the states of interactive objects—captured from first-
or third-person perspective images—to generate task plans
for various types of robotic manipulation tasks. Notably, in
the ”Cluster blocks of the same color into different corners”
task, RoboBrain not only analyzes the number of blocks of
each color on the table in Steps 1 and 2 but also provides
detailed sub-steps in Step 3, i.e., "Move the objects to form
clusters”. Specifically, it plans the movement of blocks
of four different colors to their designated locations: “top
left corner”, “top right corner”, "bottom left corner”, and
“bottom right corner”. The exceptional task generalization
capability of RoboBrain in planning further validates the ef-
fectiveness of our training dataset—including the proposed
ShareRobot dataset—and the Multi-Phase training strategy.

We also present a bad case for RoboBrain, namely the
”Clean the desk” task. In this case, the first-person perspec-
tive image depicts a work desk spilled with coffee, where
the main objects of focus include a “fissue box”, a "tipped-
over coffee cup”, and the "spilled coffee liquid”. The errors
in the planning results inferred by RoboBrain are summa-
rized as follows: (1) Object recognition error. The only
available object for wiping the desk in the image is a ”tis-
sue”, rather than a "disinfectant wipe”. (2) Omission of
critical steps. Before wiping the desk, it is necessary to
extract a tissue from the tissue box. However, this step is
missing in RoboBrain’s planning. (3) Action decision de-
viation. In Step 2, i.e., ”Wipe down the desk with a disinfec-
tant wipe”, the detailed description states, ”Start from one
end of the desk and move to the other”. This implies that
RoboBrain fails to prioritize wiping the “spilled coffee lig-
uid” specifically, focusing instead on cleaning “the entire
desk”. The primary cause might be the similarity in color
between the desk and the spilled coffee, making it difficult
for the model to distinguish.

In our extensive testing, although a small number of un-
reasonable bad cases like the one described above were ob-
served, RoboBrain demonstrated robust planning capabil-
ities in the vast majority of cases. This provides a solid
foundation for executing long-horizon manipulation tasks.

D.2. Visualization on Affordance

Here, we present the visualizations of RoboBrain’s percep-
tion of affordance areas, as shown in Fig.3. The text below

each subfigure indicates the task instructions, while the red
bounding boxes represent the affordance areas predicted by
the RoboBrain model. The visualizations in the first three
rows demonstrate that our RoboBrain model can effectively
provide reasonable affordance areas based on human in-
structions and visual information. For example, given the
instruction “drink_with the bottle”, RoboBrain can deter-
mine that the bottle cap is in a closed state, thus provid-
ing affordance information for the cap area. This highlights
RoboBrain’s strong understanding of abstract instructions.

We also present several failure cases, as illustrated in the
fourth row of Fig.3. These include misidentified objects,
interference from other objects in the scene, and instances
where no objects were recognized. These issues may stem
from the model’s limited ability to perceive and localize in
noisy environments.

D.3. Visualization on Trajectory

Here, we present additional visualizations generated by
RoboBrain using start points, as shown in Fig.4. In this fig-
ure, the red-to-purple gradient curves represent the ground
truth, while the green-to-blue gradient curves indicate the
predicted trajectories. For clarity, waypoints are omitted.
The first three rows demonstrate that, regardless of the com-
plexity of the end-effector trajectory, RoboBrain accurately
predicts 2D trajectories based on visual observations and
task instructions. These predictions closely align with the
structure of the ground truth and remain executable.

Additionally, RoboBrain’s predictions often capture the
essential features of the trajectories, leading to smoother
and potentially more efficient paths compared to the ground
truth. This improvement may stem from the inherent vari-
ability in the robot’s actual trajectories, which can include
redundant waypoints under similar manipulation scenarios.
By learning from a large, embodied dataset and utilizing the
reasoning capabilities of large language models, RoboBrain
is able to infer effective and optimized execution paths.

The visualizations in the third row further suggest that
RoboBrain avoids overfitting; it generalizes well across dif-
ferent scenarios, producing trajectories that are both exe-
cutable and reasonable.

We also present several failure cases, as shown in the
fourth row of Fig. 4. These include the robot’s end-effector
failing to accurately locate the cup, neglecting the articu-
lated nature of the fridge door while opening it, and not
accounting for the deformable properties of clothing during
folding. These examples highlight the need for improved
spatial perception, as well as the incorporation of object-
specific physical constraints and world knowledge to gener-
ate more feasible and realistic trajectories.



E. Details of ShareRobot Dataset

In the previous section, we introduced the process of col-
lecting and annotating our ShareRobot dataset. Here, we
will provide detailed prompts for data labeling and tem-
plates used during data generation. Additionally, we will
display some high-level descriptions and low-level instruc-
tions examples.

E.1. Prompts

The prompts we used for Gemini [47] in data labeling are
shown in Fig.5.

E.2. Templates of Question Types

In the process of planning data generation, the templates
used to generate question-answer pairs are shown in Fig.o.

E.3. High-level Descriptions Examples

Our ShareRobot dataset contains 10,290 long-horizon high-
level descriptions. Below, we present the 30 most fre-
quently occurring ones.

* Closing a drawer

* Opening a drawer

* Opening a cabinet door

* Dragging a strainer across a table

* Picking up a bowl

* Inserting a three-pronged object into its matching slot
* Inserting a double-square object into its matching slot
* Opening a door

* Closing a cabinet door

¢ Inserting a star-shaped object into its corresponding slot
* Opening a laptop

* Inserting an oval object into its corresponding slot

* Picking up a ketchup bottle from a table

* Moving a banana from a plate to a table

* Closing a door

» Switching a light switch

* Inserting an arch-shaped object into its corresponding slot
* Inserting a square-circle object into its matching slot

* Dragging a strainer backwards

* Dragging a mug from left to right

* Dragging a mug forward

* Picking up a red object from a table

¢ Placing a ketchup bottle onto a plate

¢ Placing a bowl inside an oven

* Inserting a hexagonal object into its corresponding slot
* Closing a microwave door

* Moving a banana from a table to a plate

* Turning on a toaster

* Opening a microwave

¢ Closing an oven door

E.4. Low-level Instructions Examples

Our ShareRobot dataset contains 28,181 low-level instruc-
tions, with the top 30 occurrences displayed below.

* Grasp the ketchup bottle

* Reach for the ketchup bottle
* Grasp the banana

* Lift the ketchup bottle

* Lift the banana

» Reach for the strainer

* Reach for the banana

* Reach for the mug

* Grasp the mug

* Lift the pot

* Lift the bowl

* Pull the drawer open

* Reach for the bowl

» Reach for the pot

* Grasp the strainer

» Reach for the drawer handle
* Grasp the handle

* Lift the spoon

* Grasp the bowl

* Reach for the spoon

* Place the ketchup bottle on the table
* Release the banana

* Reach the drawer

* Place the banana on the table
* Lift the mug

» Reach the cabinet door

* Grasp the pot

* Grasp the strainer

* Grasp the drawer handle

* Release the mug

F. Future Work

In future research, we aim to enhance various capabili-
ties of RoboBrain, including spatial understanding [24, 56],
embodied reasoning [12, 46, 62], tool utilization [29, 53],
and long-text comprehension [13, 45, 48]. We will ensure
that these capabilities are effectively integrated into down-
stream action models for application in real-world scenar-
i0s. Moreover, we will consider the issues of model effi-
ciency [4, 28] and safety [16, 30, 33, 60], as constructing a
RoboBrain that is both efficient in reasoning and secure will
be a focal point of our future research.



Given the objects in the image, if you are required to complete the task € ints”, what is your detailed plan?
Write your plan and explain it in detail, using the following format: Stepl: xxx\n Step2: xxx\n ..\n

Stepl: Move to the potted plant. Move towards the potted plant on the right side of the cardboard box.

Step2: Pick up the watering can. Pick up the white watering can from the cardboard box. Ensure that you have a
firm grip on the handle for better control while watering.

Step3: Water the plants. Water the leaves and soil of the potted plant using the watering can. Start by gently
pouring water over the top leaves, ensuring they are moist but not overly wet. Then, pour water into the soil around
the base of the plant, making sure it reaches all areas without causing any water to spill out of the pot.

Step4: Place the watering can back. Put the watering can back into the cardboard box. Make sure it is placed
securely so it doesn't tip over or cause any damage.

Step5: Move away from the plants. Step away from the plants to avoid any accidental damage while moving
around. Ensure that there is no excess water pooling around the base of the plants, as this can lead to root rot.

Given the objects in the image, if you are required to complete the task “Put wer”, what is your
detailed plan? Write your plan and explain it in detail, using the following format: Stepl: xxx\n Step2: xxx\n ..An

Stepl: Move towards the pot on the counter. Move the robotic arm towards the pot that is placed on the
counter next to the sink. The arm should move in a straight line towards the pot.

Step2: Pick up the pot. Grasp the pot with the gripper of the robotic arm and lift it from the counter. Make sure to
hold the pot securely to avoid dropping it.

Step3: Move the pot towards the drawer. Move the pot towards the open drawer below the counter. The arm
should move in a smooth motion, keeping the pot close to the body for stability.

Step4: Place the pot in the drawer. Place the pot inside the drawer and adjust its position if necessary. Ensure that
the pot is fully inside the drawer and not touching the edges or the lid.

Step5: Close the drawer. This can be done by moving the arm away from the drawer and then pushing the drawer
closed manually or using a mechanism built into the robotic arm.

Step6: Move away from the drawer. Move the robotic arm away from the drawer to complete the task. The arm
should move back to its original position or to a designated safe area.

1
1 Given the objects i m the image, if you are required to complete the task er blocks of the ]
! orners”, what is your detailed plan? Write your plan and exp\am itin detail, using the fo\lowmg format: 1
1 Stepl x0\n Step2: xodn ...\n 1

Stepl: Identify the objects of the same color. - Green cubes: 2 - Blue cubes: 2 - Red cubes: 2 - Yellow cubes: 2
Step2: Group the objects by color. - Green cubes: [green cube, green cube] - Blue cubes: [blue cube, blue cube]
- Red shapes: [red shape, red shape] - Yellow shapes: [yellow shape, yellow shape]
Step3: Move the objects to form clusters.

- Place all green cubes next to each other in the top left corner.

- Place all blue cubes next to each other in the top right corner.

- Place all red shapes next to each other in the bottom left corner.

- Place all yellow shapes next to each other in the bottom right corner.
Step4: Verify the clusters. Check that each cluster contains only objects of the same color.

1
Given the objects in the image, if you are required to complete the task >, > desk”, what is your detailed ]
plan? Write your plan and explain it in detail, using the following format: Step1: xxx\n Step2: xxx\n ..\n 1

Stepl: Move the coffee cup to a safe location. Make sure to keep the coffee cup away from the monitor.

Step2: Wipe down the desk with a disinfectant wipe. Start from one end of the desk and move to the other.
Step3: Clean the monitor screen using a disinfectant wipe. Be careful not to touch any other parts of the monitor.
Step4: Dust and clean the computer tower using a disinfectant wipe. Pay attention to any vents or crevices where
dust may have accumulated.

Step5: Organize the cables and wires. Use the robotic arm to hold them in place while you use a cable organizer or
ties to secure them.

Step6: Dispose of any trash or empty containers from the desk. Use the robotic arm to pick them up and throw
them away.

(d) Embodied planning for Task [Clean the desk].

Figure 2. Additional embodied planning of RoboBrain. (a)~(c) show some good cases of RoboBrain’s embodied planning, while (d)
shows its bad case. More detailed analysis can be found in Sec.D.1.



drink_with the cup hold the cup drink_with the bottle

ikt

hold the book

wash the pot pick the knife wash the wine glass

Figure 3. Additional visualizations of diverse affordance areas. The text below each subfigure indicates the task instructions, while the
red bounding boxes represent the affordance areas predicted by the RoboBrain model. The visualizations in the first three rows demonstrate
that our RoboBrain model effectively identifies reasonable affordance areas based on human instructions and visual information. The fourth
row presents several failure cases, which may stem from the model’s lack of ability to perceive and localize in noisy environments. This
limitation could be attributed to the absence of such scenarios in the training data used during Stage 4. The complete prompt provided
to RoboBrain is: ”You are a Franka robot using joint control. The task is $TASK. Please predict all possible affordance areas of the end
effector.” Here, $TASK represents specific task instructions, such as “drink with the cup.”



place green rice chip bag into top
drawer

make a piece of toast with
the oven

Pick up a white plate, and then  make a cup of coffee with keurig  pick up the blue cup and put it
place it on the red plate machine into the brown cup

pick sponge from middle drawer place green cube on table place green rice chip bag into
and place on counter top drawer

Pick up the object on the table opening the fridge folding a cloth
and place it in the cup

Figure 4. Additional visualizations of diverse 2D trajectories. The red-to-purple gradient curves represent the ground truth, while the
green-to-blue gradient curves indicate the predicted trajectories. The visualizations in the first two rows demonstrate that our RoboBrain
model effectively generates end-effector manipulation curves based on the robot’s observations and task instructions. The third row shows
that RoboBrain is not merely fitting trajectories but also exhibits the ability to generate more reasonable and feasible curves. The fourth row
presents some failure cases, which stem from a lack of spatial awareness and world knowledge. These limitations result in an inability to
accurately localize the objects involved in interactions, account for physical constraints, and adapt to the variability of deformable objects.



/ Data Labeling Prompt with Gemini \

## Task Description

You will analyze a video (represented by image frames) of a robotic arm performing a specific task. Your task is to identify the
primary task during the video with the help of the referenced descrition, summarize the task and rewrite the description, extract the
necessary steps to complete it, and specify the frame range for each step.

## Target

First, identify the main task the robotic arm is performing. This task could be a clear goal or a series of
related activities (e.g., assembling furniture, repairing equipment, preparing food, etc.). Briefly describe the primary task in
one sentence.

Once the task is identified, extract the key steps required to complete it, ensuring that each step is clearly
described and logically ordered. Each step may include:
- Specific actions (e.g., tightening screws, stirring mixtures, pressing buttons, etc).
- Frame window: Specify the start and end frame for each step (from "0 to "29°).

## Output Format
Provide the task description and steps in two parts, formatted as JSON:
A string summarizing the primary task in the video without mentioning the subjects - the robotic arm.
An array where each element represents a step, containing:
- step_description: A concise description of the step which the action being performed in the format of verb phrases without
mentioning the subjects - the robotic arm (e.g., "Add syrup in the glass").
- start_frame: The start frame of the step (from "0 to "29°).
- end_frame: The end frame of the step (from "0 to "29°).

## Example
{
"task_summary": "Assembling an office desk.",
"steps": [
{"step_description": "Remove all components and screws from the package.", "start_frame": 0, "end_frame": 4},
{""step_description": "Use a screwdriver to attach the legs to the tabletop.", "start_frame": 5, "end_frame": 14},
{"step_description": "Install the leg pads at the bottom.", "start_frame": 15, "end_frame": 19},
{"step_description": "Fix the support beam between the legs with screws.", "start_frame": 20, "end_frame": 28},
{"step_description": "Ensure all screws are tight and the desk is stable.", "start_frame": 29, "end_frame": 29}

}

Now, it’s your turn!
{Video} Please output the task summary and steps in the specified JSON format based on your analysis of the video.

N /

Figure 5. Additonal visualizations of prompts for Gemini. The prompts encapsulate the task description for robotic arm action recogni-

tion, the components of the target, and the desired response format. Additionally, an example is included to assist Gemini in understanding
the specific task.




Templates of 10 Question Types

## Planning Task
The objective is <long-horizon>, what should be the next step to move forward?
In pursuit of achieving <long-horizon>, what's the next action to take?
To reach the goal of <long-horizon>, which task should be prioritized next?
Given the goal of <long-horizon>, what is the most logical next move?
With the aim of <long-horizon>, what should you focus on next?

## Planning with Context Task
So far, you've completed these steps: 1-<task 1>, ..., n-1-<task n-1>. What's the next move to achieve the goal of <long-horizon>?

With the following steps completed: 1-<task 1>, ..., n-1-<task n-1>. What is the next logical step toward <long-horizon>?
Considering the goal of <long-horizon>, and having done 1-<task 1>, ..., n-1-<task n-1>, what should you do next?

You are working towards <long-horizon>. After completing steps 1-<task 1>, ..., n-1-<task n-1>, what's the next immediate task?
Given your progress so far (1-<task 1>, ... n-1-<task n-1>), what's the next step toward achieving <long-horizon>?

## Planning Remaining Steps Task
With <long-horizon> as the goal and the steps 1-<task 1>, ..., n-1-<task n-1> completed, what are the next five things to do?
To work toward <long-horizon>, what are the next five steps after completing 1-<task 1>, ..., n-1-<task n-1>?
Here's what's been done so far: 1-<task 1>, ..., n-1-<task n-1>. What are the next five tasks to take toward the goal of <long-horizon>?
The goal is <long-horizon>. After completing 1-<task 1>, ..., n-1-<task n-1>, what are the next five steps you should take?
Given the progress so far: 1-<task 1>, ..., n-1-<task n-1>, what's the next set of five steps to move closer to <long-horizon>?

## Future Prediction Task
Based on the current situation, what is expected to happen after <task n-1>?
What do you think will happen after <task n-1> is completed?
Considering the current sequence of tasks, what's likely to occur after <task n-1>?
Given the context, what will most likely happen following <task n-1>?
After <task n-1>, what's the most probable next event?

## Success (Positive/Negative) Task
Was <task n> completed successfully?
Has <task n> been fully carried out?
Has <task n> reached completion?
Was <task n> finalized?
Can we say that <task n> was accomplished?

## Discriminative Affordance (Positive) Task
Is <task n> something that can be accomplished right now?
Can <task n> be initiated at this moment?
Is it feasible to begin <task n> immediately?
Is now a suitable time to carry out <task n>?
Can you proceed with <task n> given the current conditions?

## Discriminative Affordance (Negative) Task
Is <random task> what you're working on at the moment?
Are you currently engaged in <random task>?
Is this <random task> you're focused on right now?
Is this <random task> you're handling at present?
Are you doing <random task> at this very moment?

## Generative Affordance Task
What can you do at this moment?
Which task is possible to start right now?
Given the current situation, what action can be taken?
What's the next available action?
Considering the circumstances, what task can you begin now?

## Past Description Task
What was the last task completed?
What just occurred?
What was the most recent action taken?
What task did you just finish?
What happened immediately before this?

Figure 6. Templates of 10 question types. We have 10 question types for planning, each with 5 different templates to ensure the diversity
of our ShareRobot dataset question formulations.
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