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Method Layers Patch size Param(M) FLOPs(G)
Network configurations of Base(B) models.
DiT 12 2 130 23.01
DiT 12 1 130 87.07
D2iT(Ours) 10+2 2 & 1 136 35.93
Network configurations of Large(L) models.
DiT 24 2 458 80.71
DiT 24 1 457 309.51
D2iT(Ours) 20+4 2 & 1 467 102.25
Network configurations of Extra Large(XL) models.
DiT 28 2 675 118.64
DiT 28 1 674 456.98
D2iT(Ours) 22+6 2 & 1 687 145.60

Table 1. Comparison of network configurations of D2iT and DiT.
The number of D2iT layers consists of DiT Backbone and Efficient
RefineNet. FLOPs are measured with a latent embedding size of
32×32×4.

1. Detailed Implementations
Architectures of DVAE & D2iT. In the first stage, DVAE
follows the official implementation of VAE except for the
proposed Dynamic Grained Coding module. For the hier-
archical encoder, we add two residual blocks followed by a
downsampling block to extract each feature map.

In the second stage, we use the same adaLN-Zero set-
tings as DiT to modify RefineNet Blocks. Table 1 shows the
parameter count and Gflops of D2iT compared to DiT[2].
More details and experimental training settings at different
model sizes of the Dynamic Content Transformer in D2iT
are listed in Table 2. In addition, the probability of dropout
is all set to be 0.1 for all layers. And we set the total number
of the Dynamic Content Transformer layers (i.e., DiT back-
bone + RefineNet) according to DiT, achieving base-, large-
, and extra large-sized models, denoted by D2iT-B/L/XL.
The Gflops of D2iT are significantly smaller than those of
the DiT model with the patch size set to 1.

*Zhendong Mao is the corresponding author.

Model D2iT-B D2iT-L D2iT-XL
Parameters 136M 467M 687M
Flops 35.93G 102.25G 145.60G
Coarse Grain 16× 16× 4 16× 16× 4 16× 16× 4
Fine Grain 32× 32× 4 32× 32× 4 32× 32× 4
Total Layers 12 24 28

DiT backbone
Patch size 2 2 2
Layers 10 20 22
Dimensions 768 1024 1152
Heads 12 16 16

RefineNet
Patch size 1 1 1
Layers 2 4 6
Dimensions 768 1024 1152
Window size 16× 16 16× 16 16× 16

Batch size 256 256 256
Optimizer AdamW AdamW AdamW
learning rate 1× 10−4 1× 10−4 1× 10−4

Sampler DDPM DDPM DDPM
Sampling steps 250 250 250

Table 2. Experimental setup of Dynamic Content Transformer of
D2iT with different parameters.

regularization DVAE rFID-10K↓ D2iT-B FID-10K↓
VQ-reg. 2.38 25.23
KL-reg. 2.09 22.11

Table 3. Ablations of regularization for reconstruction of DVAE
and generation of D2iT-B on FFHQ.

Training Details. DVAE is trained with Adam optimizer
with β1 = 0.5 and β2 = 0.9, and the base learning rate is
set at 4.5× 10−6 following [3]. The weight for adversarial
loss is set to be 0.75 and the weight for perceptual loss is
set to be 1.0. For FFHQ, DVAE is trained for 80 epochs
with a linear learning rate warmed up during the first epoch.
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Figure 1. Visualization of the variable-length coding of our DVAE, where our grain map exactly matches the entropy map of the original
image and therefore leads to more accurate and natural coding representations, i.e., the information-dense regions in entropy map are more
red and deserves more latent codes to reduce the reconstruction error, while information-sparse regions where VAE has lower reconstruction
error are assigned few latent codes.

For ImageNet, DVAE is trained for 50 epochs with a linear
learning rate warmed up during the first 0.5 epochs.

The Dynamic Grain Transformer (predict grain map)
and Dynamic Content Transformer (predict multi-grained
noise) of D2iT are trained using AdamW optimizer with pa-
rameters β1 = 0.9 and β2 = 0.999. The weight decay is set
to be 0.01. We use a constant learning rate of 1× 10−4, and
utilize DDPM Sampler with 250 steps like previous works.
The training batch size is 256, and there is no weight decay.
In the main experiment, D2iT-L and D2iT-XL are trained
for 800 epochs for FFHQ and ImageNet. In the ablation
experiments, D2iT-B is trained for 50 epochs for FFHQ.

2. More Analysis of DVAE

2.1. Impact of regularization VQ-reg. & KL-reg.

We experiment with two different types of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE, as used in [2], whereas VQ-reg. incorporates a vector

quantization layer within the decoder, similar to a VQGAN
in [1]. As shown in Table 3, we conduct ablation studies
on the FFHQ benchmark, testing DVAE with dual granu-
larities F = 8, 16 and a fine-grained ratio rf=8 = 0.5, to
assess its effect on image generation in D2iT. The VQ-reg.
is trained with codebook size K = 1024. And all of the
models are trained for 50 epochs. The KL-reg. regulariza-
tion shows better performance in reconstruction quality for
the first stage, and it provides a latent representation that is
easier to learn for the second stage of image generation. KL-
reg. provides a latent representation of a continuous space
that is more suitable for D2iT than VQ-reg.

2.2. More Visualization

We provide more visualization of our information-density-
based dynamic latent coding in Figure 1. The output of
DVAE contains Multi-grained latent code and the corre-
sponding grain map. We show that the grain map matches
image entropy map for both simple and complex regions,
i.e., important regions are assigned more codes and unim-



Window size FID-10K↓
w/o 27.62
16 22.11
8 23.56
4 23.82
2 23.93

Table 4. Effect of window size for RefineNet of D2iT-B on FFHQ.

Grain Map Setting FID-50K↓
Random 12.65
Ground Truth 1.70
Dynamic Grain Transformer 1.73

Table 5. Effect of Dynamic Grain Transformer with D2iT-XL on
ImageNet.

portant ones are assigned few codes, leading to more sensi-
ble reconstruction.

3. More Analysis of D2iT

3.1. Impact of the Window size of RefineNet.
The windows of RefineNet are arranged to evenly partition
the image in a non-overlapping manner. Supposing each
window contains M ×M patches, the computational com-
plexity of a global multi-head self attention(MSA) module
and a window-based one on an image of h×w patches are:

Ω(MSA) = 4hwC2 + 2(hw)2C, (1)

Ω(W-MSA) = 4hwC2 + 2(M)2hwC, (2)

where the former MSA of standard Transformer is quadratic
to patch number h×w, and the latter W-MSA of RefineNet
Transformer is linear when M is fixed.

We compared the effect of different window sizes in Ta-
ble 4. We observe that images generated using RefineNet
are significantly better than those using the DiT backbone
alone, further demonstrating the need for fine-grained noise
corrections. When the window size varies, the generation
FID scores differ slightly, with the model performing best
when the window size is set to 16. Thus, we conclude that
for 32 × 32 × 4 hidden spaces, the optimal window size is
16 for the best performance.

3.2. Impact of the Dynamic Grain Transformer.
In the ablation experiment described in the main text, we
demonstrate the impact of the grain map generated by the
Dynamic Grain Transformer in D2iT-L on the images gen-
erated under FFHQ. Here, we complement this by show-
ing the impact of the grain map generated by the Dynamic

Grain Transformer in D2iT-XL under ImageNet on class-
conditionally generated images. The results of grain maps
generated by the Dynamic Grain Transformer are compara-
ble to the ground truth grain maps of the ImageNet dataset
and significantly better than random grain maps, i.e., the
generated grain map with an FID score of 1.73 versus the
ground truth grain map with an FID score of 1.70. This
demonstrates that the Dynamic Grain Transformer can ef-
fectively model the spatial distribution of different classes
in ImageNet.

3.3. More Visualization
More examples of D2iT-XL’s generated results on Ima-
geNet can be found in Figure 2, and D2iT-L’s generated
results on FFHQ are shown in Figure 3. For different gen-
erated grain maps, D2iT can generate a variety of images.
This indicates that D2iT achieves a diverse global represen-
tation. At the same time, the information density distribu-
tion of the generated image complies well with the grain
map. This demonstrates that the Dynamic Content Trans-
former can capture the global structure, thereby more effec-
tively constructing images that conform to the spatial den-
sity distribution specified by the grain map.
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Figure 2. Visualization of the grain map & generation image with D2iT-XL on ImageNet. The grain map size is 16×16, with red indicating
fine-grained regions (codes with 8× downsampling) and blue indicating coarse-grained regions (codes with 16× downsampling).

Figure 3. Visualization of the grain map & generation image with D2iT-L on FFHQ.
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