Lift3D Policy: Lifting 2D Foundation Models for Robust
3D Robotic Manipulation

Supplementary Material

Due to space limitations, we provide additional details,
as well as quantitative and qualitative results of our Lift3D
in this supplementary material. The outline is shown below.
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— RLBench Experiments
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— Additional Ablation Study
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* C. Additional Qualitative Experiments (Appendix C)
— Additional Real-World Visualization
— Additional Failure Case Analysis

A. Additional Details

Our training dataset is divided into two parts, systemati-
cally empowering the 2D foundation model with 3D robotic
manipulation capabilities. In Sections A.1, we provide ad-
ditional details of the reconstruction dataset, which is used
in implicit 3D robotic representations pretraining. In Sec-
tions A.2, we provide additional details of the real-world
dataset, which is used in explicit 3D imitation learning.

A.1. Details of Reconstruction Dataset

Since most subsets in the open x-embodiment dataset [8]
do not simultaneously contain both camera parameters and
depth, we are unable to construct point cloud data for our
explicit 3D imitation learning (stage 2). Therefore, we lever-
age this dataset to build our MAE training data. First, we
select subsets that contain paired RGB, depth, and text de-
scription data. Second, we randomly sample one frame from
every nine frames in each episode. As a result, the recon-
struction dataset provides 1 million image-depth-text pairs.
The images are used as model input, depth serves as the
reconstruction target, and the text descriptions are used for
task-related affordance generation. The selected subsets are:

* tacoplay

e berkeley_autolab_ur5

* uiuc_d3field

* nyu_franka_play_dataset_converted_externally_to_rlds
e stanford_robocook_converted_externally_to_rlds

* maniskill_dataset_converted_externally_to_rlds

A.2. Additional Details of the Real-World Dataset

We use the Franka Research 3 (FR3) arm as the hardware
platform for our real-world experiments. Due to the rela-
tively short length of the FR3 gripper fingers, which makes
it challenging to perform certain complex tasks, we 3D print
and replace the original gripper with a UMI gripper [1]. We
conduct ten tasks, selecting 30 episodes and extracting key
frames to construct the training set for each task. The num-
ber of key frames per task varies, as follows: 3 frames for
unplug charger, slide block, open drawer, close drawer;
and 4 frames for place bottle at rack, pour water, pick and
place, water plants, wipe table. The experimental assets and
environment are shown in Figure 1. During the evaluation
of real-world tasks, we determine the success of each task
based on human assessment. The successful states of the 10
tasks are shown in the End State images in Figure 4 of the
main text and Figure 2 of the appendix.

Figure 1. Real-world scenario. The assets and environment con-
figured for the real-world experiments.

B. Additional Quantitative Experiments

In Section B.1, we compare our method against other base-
lines using the RLBench simulator benchmark. Additional
real-world experiments are presented in Section B.2, which
include four real-world tasks not covered in the main text.
The fine-grid success rates for each task in the MetaWorld
benchmark are provided in Section B.3. Finally, Section B.4
investigates the impact of the number and positioning of
virtual planes, evaluates the effect of parameter update strate-



gies, and analyzes the influence of the 3D tokenizer’s param-
eter size on 3D imitation learning.

B.1. RLBench Experiments

Experiment setting. In the RLBench benchmark [6], the
data are collected through pre-defined waypoints and the
Open Motion Planning Library [12]. Each task consists of
100 gathered episodes. Following previous work [3, 4, 11],
we use key frames to construct the training dataset. For
baseline comparison, we select VC-1 [7], PointNet [9], and
RVT-2 [4]. Since Lift3D and PointNet require only single-
view point cloud data as input, we compare RVT-2 in two
settings: using single or four different viewpoints of RGBD
cameras to construct the input point cloud data. Note that,
many existing policies [2, 13] use single-view point cloud as
input, which is a more practical and low-cost approach for
real-world applications. The training details are consistent
with the simulation experiments described in Section 4.1 of
the main text. For a fair comparison, we ensure all methods
have the same model throughput and train for the same
number of iterations.

Quantitative Results. In Table 1, Lift3D(CLIP) achieves
an average success rate of 72.6 on RLBench. Compared
to 2D and 3D robotic representation methods, Lift3D im-
proves the mean success rate by 24.6 and 14.6, respectively.
These results demonstrate that our method effectively en-
hances the 3D robotic representation of the 2D foundation
model. Meanwhile, when comparing Lift3D to RVT-2 under
single-view point cloud input, Lift3D achieves an accuracy
improvement of 7.3. Even when compared with RVT-2 using
four-view point cloud input, Lift3D still achieves comparable
results. These findings indicate that even with single-view
point cloud data, our method demonstrates robust manip-
ulation capabilities, highlighting the strong practicality of
Lift3D. Unlike RVT-2, our Lift3D model does not utilize a
language model or language prompts for task differentiation.
Instead, it exclusively relies on point clouds and robot states
as input. In future work, we plan to enhance our framework
by incorporating a language model to better handle human
language conditions, which is highly feasible and straightfor-
ward. For example, we integrate a CLIP-BERT [10] model
into Lift3D(CLIP) for language text encoding.

B.2. Additional Real-World Experiments

As shown in Table 2, we evaluate the performance of four
methods across 10 real-world tasks, covering both rigid and
deformable object manipulations. The results demonstrate
that Lift3D consistently outperforms existing approaches,
highlighting its superior ability to understand 3D spatial
relationships and execute precise robotic actions. Notably,
Lift3D achieves a mean success rate of 62.5%, surpassing
the previous state-of-the-art DP3 by 17 percentage points.
Below, we provide a detailed analysis of four challenging

tasks. Pour Water: This challenging task requires com-
plex action predictions and precise gripper rotation for con-
trolling the bottle. Lift3D achieves a success rate of 85%,
representing a 25% improvement over the previous SOTA
(DP3). Lift3D successfully completes the sequence of bottle
grasping, bottle moving, and precise rotation, demonstrating
its significant potential in handling complex tasks. Stack
Blocks: This task demands precise spatial understanding
and position prediction. Lift3D accurately predicts the posi-
tions of both the grasping and placement blocks, achieving
a 35% success rate. While the accuracy is not optimal, it
still outperforms other methods, demonstrating superior 3D
robotic representation. Open/Close Drawer: These tasks
assess the model’s ability to interact with articulated objects.
Lift3D achieves success rates of 60% and 75% for opening
and closing drawers, respectively. It accurately predicts the
grasp position and rotation for the drawer handle, as well
as the precise trajectory for the opening and closing motion.
The results demonstrate that Lift3D can not only predict
accurate 6-DoF poses but also predict motion trajectories for
articulated objects. Based on all real-world results, we evalu-
ate the exceptional 3D robotic representation and pretraining
knowledge of our Lift3D policy, which demonstrates robust
manipulation capabilities across diverse real-world tasks,
even with only 30 episodes of training data.

B.3. Detail Score of MetaWorld

As shown in Table 3, we present the fine-grid scores for
each task in MetaWorld. The reported scores represent the
average success rate across two camera views: Corner and
Corner2. Lift3D (CLIP) ranks first in 8 tasks with an average
success rate of 83.9%, while Lift3D (DINOv2) ranks first
in 11 tasks with an average success rate of 84.5%. Notably,
Lift3D (DINOV2) achieves nearly 100% success in 7 tasks,
and Lift3D (CLIP) does so in 5 tasks. These results demon-
strate that Lift3D effectively enhances both the implicit and
explicit 3D robotic representations of 2D foundation mod-
els, regardless of their pretraining methods. However, on
the push-wall task, Lift3D does not achieve leading perfor-
mance. By visualizing the model’s input, we find that the
sparsity of the point cloud on the wall leads to inaccuracies
in predicting the push position. In future work, we plan
to increase the density of the input point cloud, enabling
the model to extract more precise and detailed explicit 3D
robotic representations.

B.4. Additional Ablation Study

In Table 4, we present three additional ablation study on the
Metaworld benchmark, which use the same task of main text
(assembly and box-close), reporting the average success rate.
Number of Virtual Planes. We analyze the effect of varying
the number and positions of virtual planes, which are used
for positional mapping between the 3D input points and the



Method ‘ Input Type Close box Put rubbish in bin Close laptop lid Water plants Unplug charger Toilet seat down‘Mean

VC-1[7] |Single-view RGB 52 12 88 12 28 96 48.0
PointNet [9]| Single-view PC 52 56 88 20 36 96 58.0
RVT-2[4] | Four-view PC 38 100 100 12 4 100 67.3
RVT-2 [4] | Single-view PC 96 100 76 16 8 96 65.3
Lift3D Single-view PC 92 80 92 36 36 100 72.6

Table 1. Comparison of manipulation success rates between Lift3D and 2D & 3D baselines in RLBench benchmarks. ‘Single-view
PC’ and ‘Four-view PC’ indicate the use of one or four different viewpoints of RGBD cameras to construct the input point cloud data, which
does not indicate the number of virtual planes in RVT-2.

Method ‘Input Type ‘ Pick and Place Place Bottle Slide Block Unplug Charger Water Plants Wipe Table Pour Water Stack Block Open Drawer Close Drawer‘Mean

VC-1[7] RGB 30 30 20 25 10 10 35 0 10 35 20.5
PointNet [9] PC 20 40 30 20 10 20 30 15 30 30 24.5
DP3 [13] PC 40 50 50 45 20 30 60 30 60 70 455
Lift3D PC 85 90 60 55 40 40 85 35 60 75 62.5

Table 2. Quantitative results for real robot experiments. The training setup is consistent with the real-world experiments described in
the main text. For evaluation, we use the model from the final epoch and test it 20 times across diverse spatial positions. ‘RGB’ and ‘PC’
indicate that the model input is 2D images and 3D point cloud, respectively.
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Figure 2. The qualitative results of Lift3D in real-world experiments, including the input point cloud examples, manipulation progress,
and the task completion end state, are shown. The visualization case differs from the samples presented in the main text.

2D positional embeddings. The main paper reports results back), and a single plane (front). The results, as shown in
using six planes (top, bottom, left, right, front, and back). Table 4, indicate that the six-plane configuration achieves the
Here, we compare this setup with configurations using four best performance (96%), followed by two planes (92%), four

planes (front, back, left, and right), two planes (front and planes (88%), and one plane (86%). This demonstrates that



Adroit MetaWorld
Algorithm Hammer Door Pen | Mean S.R. | Button-press Drawer-open Reach Hammer Handle-pull Peg-unplug-side
CLIP 100 100 52 84.0 100 100 56 88 22 78
R3M 100 100 56 85.3 92 100 60 60 68 96
VC-1 88 100 48 78.7 96 100 30 88 10 50
PointNet 60 100 48 69.3 100 100 52 38 4 68
PointNet++ 68 100 60 76.0 98 84 48 70 12 78
PointNeXt 52 96 48 65.3 100 100 36 50 78 92
SPA 100 100 44 81.3 100 96 56 100 36 68
DP3 88 100 12 66.7 100 100 40 100 90 98
Lift3D(Dinov2) 100 100 56 85.3 100 100 80 100 100 96
Lift3D(Clip) 100 100 64 88.0 100 100 74 94 100 98
MetaWorld

Algorithm Lever-pull Dial-turn  Sweep-into  Bin-picking Push-wall Box-close Assembly Hand-insert Shelf-place | Mean S.R.
CLIP 72 82 40 92 64 60 64 36 26 65.3
R3M 76 100 60 60 60 92 100 66 36 75.1
VC-1 76 76 60 80 64 66 60 44 12 60.8
PointNet 86 94 24 44 36 46 100 32 14 55.9
PointNet++ 94 78 42 72 28 86 96 26 12 61.6
PointNeXt 80 92 78 82 26 78 98 20 20 68.7
SPA 68 84 64 92 55 76 96 36 16 69.5
DP3 80 92 22 24 54 48 100 14 18 65.3
Lift3D(Dinov2) 76 100 80 100 40 92 100 76 28 84.5
Lift3D(Clip) 86 100 72 92 44 92 100 64 42 83.9

Table 3. Comparison of manipulation success rates between Lift3D and 2D & 3D baselines. The table presents task-specific scores for

each method, covering 18 tasks in Metaworld and 3 tasks in Adroit.

Experiment Configuration | Parameters | Mean
1 plane - 86
. 2 planes - 92
Virtual Planes 4 planes - 38
6 planes - 96
LoRA 1.01M 96
Update Strategy | Without LoORA 0.87M 90
Full Fine-Tuning 116.79M 92
1 layer 0.37M 76
. 2 layers 0.66M 90
3D tokenizer 3Tayers TOTM 96
4 layers 3.96M 94

Table 4. Ablation study results evaluating the influence of (1) the
number of virtual planes for positional embeddings, (2) different
parameter update strategies (LoRA, without LoRA, and full fine-
tuning), and (3) the number of layers in the 3D tokenizer. Success
rates highlight the advantages of the proposed configurations

using six planes provides diverse positional relationships
from multiple perspectives, better encodes the positional
information of point cloud data, and minimizes the loss of
spatial information.

Parameter Update Strategy for Imitation Learning. We
evaluate the impact of different parameter update strategies
during the imitation learning stage (Stage 2). For all strate-
gies, we update the 3D tokenizer and policy head, both of
which are randomly initialized. Our proposed method injects
LoRA [5] into foundation models for parameter-efficient

fine-tuning. Specifically, we explore two configurations: (a)
full fine-tuning of all parameters and (b) excluding LoRA
injections. The results, summarized in Table 4, indicate that
our adopted update strategy achieves the highest mean suc-
cess rate (96%), though the performance differences are mi-
nor. These findings suggest that when the policy has strong
3D robotic representations, it can deliver robust manipula-
tion regardless of parameter update strategies. Meanwhile,
Lift3D’s update strategy is highly efficient, updating only
1.01M parameters—ijust 1% of the total model.

Number of Layers in the 3D Tokenizer. Different lay-
ers used in the 3D tokenizer affect the module’s parameter
size. Our method employs a 3-layer 3D tokenizer specifi-
cally designed for efficiently converting point clouds into 3D
tokens. Each layer integrates Farthest Point Sampling [9]
to reduce the number of points, the k-Nearest Neighbor al-
gorithm (k=64) for local feature aggregation, and learnable
linear layers for feature encoding. The main paper presents
results based on the 3-layer configuration. Additionally, we
conduct experiments comparing setups with 1, 2, 3, and 4
layers, where the token feature channel dimensions are set
to 192, 384, 768, and 1536, respectively. For varying dimen-
sions, we incorporate an additional linear layer to align the
channel dimensions with those required by the 2D founda-
tion model (e.g., CLIP-ViT-base uses a channel dimension
of 768). As shown in Table 4, the 3-layer configuration
achieves the highest success rate (96%), outperforming the
others: 4 layers (94%), 2 layers (90%), and 1 layer (76%).
While both the 3-layer and 4-layer configurations demon-



70 Lift3D(CLIP) vs. CLIP »

60
50
~
40
30 pe
20 °
10
0
20epoch 40epoch 60epoch 80epoch
@-Lift3D(CLIP)-304M Lift3D-86M
CLIP-304M CLIP-86M

Figure 3. Scalability. Y-axis is the manipulation success rate.

strate strong performance, the 3-layer setup emerges as the
optimal choice, offering a better balance between accuracy
and computational efficiency.

Different PE Integration Methods. We conducted addi-
tional experiments on the assembly and close-box tasks to
assess the effectiveness of different PE integration methods,
including simple averaging, a learnable MLP, and max pool-
ing. These methods achieved mean success rates of 96, 94,
and 94, respectively. Importantly, each approach preserves
the alignment between 2D PEs and 3D tokens during con-
catenation. The results underscore the advantage of cube
projection, which captures diverse positional relationships
within each virtual plane, enabling a more comprehensive
encoding of 3D tokens. This mitigates sensitivity to the
choice of integration method, ensuring consistent and robust
performance across different strategies.

B.5. Additional Scalability Experiments

In the main text, we analyze the scalability of DINOv2 and
Lift3D(DINOV2) across different model sizes, including ViT-
Base, ViT-Large, and ViT-Giant. Here, we extend our study
by providing additional results for CLIP and Lift3D(CLIP)
using the officially provided ViT-Base and ViT-Large models,
with parameter sizes of 86M and 304M, respectively.

As shown in Figure 3, Lift3D with ViT-Large achieves
a score of 68, while ViT-Base reaches 42—both surpass-
ing the original CLIP model, which only achieves 24 and
28. These results further highlight the strong scalability of
Lift3D across different base models, demonstrating faster
convergence and superior performance compared to their
respective 2D foundation models.

C. Additional Qualitative Experiments

In Section C.1, we visualize the manipulation process of four
real-world tasks not covered in the main text. In Section C.1,
we visualize the failure cases in real-world experiments and
analyze the failure reasons.

C.1. Additional Real-World Visualization

As shown in Figure 2, we visualize the manipulation pro-
cesses of ten real-world tasks. All visualization results are
derived from our proposed Lift3D(CLIP-ViT-base) policy
model. Each real-world task is specifically designed to eval-
uate different capabilities of the Lift3D policy model. For
the first six tasks, we selected visualization cases different
from those presented in the main text. Our method accu-
rately predicts 7-DoF end-effector poses, enabling tasks to
be completed along the trajectories. For instance, in the
stack block task, Lift3D first accurately grasps the red block,
lifts it smoothly, and then precisely places it directly above
the green block. This task highlights the model’s spatial
reasoning capabilities, requiring precise perception of the
red and green blocks’ positions and an accurate understand-
ing of their spatial relationships. Demonstration videos are
provided in the supplementary material.

C.2. Additional Failure Case Analysis

As shown in Figure 4, through extensive real-world experi-
ments, we identified four primary categories of failure cases
that affect the performance of Lift3D. The first category, loss
of control, typically occurs during interactions with target
objects, such as open drawer and close drawer. It is char-
acterized by inconsistent force application when handling
objects of varying weights and sudden gripper slippage on
smooth surfaces. Reotational prediction deviations con-
stitute the second category of failures, particularly evident
in tasks requiring precise rotation control, such as water
plants, pour water, and place bottle at rack. These failures
include accumulated errors in multi-step rotational move-
ments and incorrect rotation angles when interacting with
target objects. The third category encompasses pose pre-
dictions that exceed the robot’s degree of freedom limits.
The model occasionally predicts poses that exceed the me-
chanical limits of the Franka robotic arm, generates target
positions that are unreachable due to workspace boundaries,
or produces kinematically infeasible configurations during
complex transitions.
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Figure 4. The failure cases of Lift3D in real-world experiments, including examples of input point clouds, manipulation progress, and the
failure end states, are presented. The tasks include unplug charger, open drawer, stack block, and water plants.
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