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1. Test Settings
For a fairer comparison with traditional codecs, we employ
their best settings to represent their best compression ratio.
We test them in both YUV420 and RGB colorespaces for a
comprehensive comparison.

YUV420 colorspace. We focus our comparison on the
YUV420 colorspace, which is commonly optimized in tra-
ditional video codecs. Our evaluation includes the com-
parison with HM [2], VTM [3], and ECM [1], represent-
ing the best H.265 encoder, the best H.266 encoder, and
the prototype of the next-generation traditional codec, re-
spectively. For each traditional codec, we utilize the offi-
cially provided config files: encoder lowdelay main10.cfg,
encoder lowdelay vtm.cfg, and encoder lowdelay ecm.cfg.
The parameters for encoding are as:

• -c {config file name}
--InputFile={input video name}
--InputBitDepth=8

--OutputBitDepth=8

--OutputBitDepthC=8

--FrameRate={frame rate}
--DecodingRefreshType=2

--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod={intra period}
--QP={qp}
--Level=6.2

--BitstreamFile={bitstream file name}

*This work was done when Zhaoyang Jia and Linfeng Qi were full-time
interns at Microsoft Research Asia.

†This paper is the outcome of an open-source project started from Dec.
2023.

RGB colorspace. In our experiments, the raw videos
are stored at YUV420 format. So we convert them from
YUV420 to RGB colorspace for testing. Following JPEG
AI [4, 5] and [10, 11], we utilize BT.709 to perform this
conversion, which brings higher compression ratio compared
to the commonly-used BT.601. We test traditional codecs
using 10-bit YUV444 as the internal colorspace and evaluate
the final results in RGB. [10, 11] prove that, for traditional
codecs, this brings better compression ratio than the direct
measurement in RGB. For HM, VTM, and ECM, we utilize
encoder lowdelay rext.cfg, encoder lowdelay vtm.cfg, and
encoder lowdelay ecm.cfg as the config file, respectively.
The parameters for coding are as:

• -c {config file name}
--InputFile={input file name}
--InputBitDepth=10

--OutputBitDepth=10

--OutputBitDepthC=10

--InputChromaFormat=444

--FrameRate={frame rate}
--DecodingRefreshType=2

--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod={intra period}
--QP={qp}
--Level=6.2

--BitstreamFile={bitstream file name}

2. Implementation Details
2.1. Module Structures

DCVC-RT follows a conditional coding manner [7, 8, 10,
11]. While the main paper covers the core network structure,

1



Decode 𝑦𝑞2Decode 𝑧𝑞

DecoderEntropy
Model

Entropy
Model

Hyper
Dec.

Encode 𝑦𝑞 and 𝑧𝑞 

DecoderEntropy
Model

Hyper
Enc.Encoder

Network 
Inference

𝑦 𝑧 param

param1 param2

Time

Time

Parallel encoding process

Parallel decoding process

Network
modules

Dependency 
path

Entropy coding

Hyper
Dec.

Decode 𝑦𝑞1

Entropy
Coding

Network 
Inference

Entropy
Coding

Feature 
Extractor

Feature 
Extractor

𝐹𝑡−1
𝑒 𝐹𝑡−1Feature 

Extractor Parallel 
ComponentsRecon.

Generation

Figure 1. Encoding and decoding pipeline. yq and zq represent the symbols to be encoded in entropy coding. This parallel coding approach
results in an average 12% speedup in our encoding process and a 9% speedup in our decoding process.

C
o

n
v 

1
x1

W
Si

LU

D
ep

th
 C

o
n

v

C
o

n
v 

1
x1

C
o

n
v 

1
x1

W
Si

LU

C
o

n
v 

1
x1

C
h

u
n

k

Figure 2. Structures of depth-wise convolution block (DC Block).
The formulation of WSiLU is detailed in Section. 2.1. Chunk
denotes splitting latents into two parts along the channel dimension.

we additionally illustrate the architecture of the depth-wise
convolution block (DC Block) in Fig. 2, which is not detailed
in the manuscript. Here, WSiLU denotes a weighted SiLU
function [6], formulated as:

WSiLU(x) = x · Sigmoid(α · x) (1)

where the weighting parameter α is set to 4 by default.

2.2. Entropy model

DCVC-RT adopts a two-step distribution estimation scheme
[9] to balance the coding speed and compression ratio. Al-
though it results in a slight performance drop compared to
more complex entropy models [10, 12], we adopt it since it
enables significantly faster coding speed.

2.3. Parallel Coding

In practical scenarios, coding speed is influenced by both
model inference time and entropy coding time. For DCVC-
RT, encoding a 1080p frame typically requires around 7.8 ms
for network inference and up to 2.6 ms for entropy coding,
indicating that entropy coding significantly contributes to
overall latency.

To accelerate the process, we propose a parallel coding
scheme, depicted in Fig. 1. Observing that certain network

Figure 3. An example for rate-control on Cactus sequence.

modules can be inferred independently of entropy coding,
we conduct these modules with entropy coding in parallel.
This parallelization does not cause severe hardware resource
contention, so the latency can be effectively reduced. For
instance, we can perform entropy coding on the CPU without
affecting concurrent network inference process on the GPU.

In encoding, the feature extractor, encoder, and entropy
model are sequentially inferred, generating symbols yq and
zq for entropy coding and the quantized latents for decoder
inference. Since the coding of yq and zq does not depend
on decoder inference, these processes are parallelized. It is
worth noting that, as the reference feature is buffered before
reaching the reconstruction module, the reconstruction gen-
eration module does not typically need to be inferred. In this
case, our encoding is usually faster than decoding.

In decoding, the entropy decoding of zq is independent
of the feature extractor, allowing us to process them con-
currently. Since decoding zq is fast, we only infer the first



Figure 4. Extend supported rate number from original 64 rates to
128 rates using interpolation on UVG dataset.

part of the feature extractor at this stage. After probability
estimation, the remainder of the feature extractor is inferred
alongside the entropy decoding of yq. Notably, we adopt a
two-step coding scheme, where we first decode y1q followed
by y2q . Experiments show that the decoding time of y1q covers
the time needed for feature extractor inference.

In our implementation, the parallel coding approach re-
sults in an average 12% speedup in the encoding process
and a 9% speedup in the decoding process, demonstrating
its effectiveness in accelerating DCVC-RT.

2.4. Model Integerization

We provide a detailed explanation to better understand the
model integerization pipeline. As mentioned in Equation ??,
all int16 features are linearly mapped from its floating-point
counterparts in the original model. Moreover, we also create
linear mappings for convolution weights w and biases b. For
a convolution layer, we have

wi = round(K2 · wf )

bi = round(K2 · bf )

where K2 = 8192 in our implementation. Let x be the input
feature and y be the output feature, we derive the integer
convolution from the floating-point convolution as follows

yf = conv(xf , wf ) + bf

yi
K1

= conv(
xi

K1
,
wi

K2
) +

bi
K2

yi =
conv(xi, wi) + bi ·K1

K2

where K1 = 512 as mentioned in Equation ??.
The processes above are rewritten as an algorithmic work-

flow in Algorithm 1.

Algorithm 1 Model Integerization for a Convolution

1: Input: Input feature x; Convolution weight wf and bias
bf ; Hyperparameters K1 and K2.

2: Output: Output feature yi.
3: if x is of type fp16 then ▷ The input frame
4: xi ← round(K1 · x).to int16()
5: else ▷ The remaining layers
6: assert x is of type int16
7: xi ← x
8: end if
9: Get int16 weight: wi = round(K2 · wf ).to int16()

10: Get int16 bias: bi = round(K2 · bf ).to int16()
11: a← conv(xi, wi) + bi ·K1

12: Return: yi ← clip( a
K2

,−32768, 32767)

Table 1. Sequences used for ablation on implicit tempo-
ral modelling. MCL-JCV contains 30 sequences, we de-
note each sequence using their ID, e.g., 01 denotes sequence
videoSRC01 1920x1080 30.

Motion Type Sequences

Large Motion 02, 04, 05, 07, 08, 10, 11, 14, 17, 19, 20, 21, 22, 24, 26

Small Motion 01, 03, 06, 09, 12, 13, 15, 16, 18, 23, 25, 27, 28, 29, 30

Scene Change 04, 14, 19, 20, 21, 25, 26, 27, 28, 29

Table 2. Breakdown on per-module complexity for coding a 1080p
frame on A100 GPU.

Metric Encoder Decoder
Feature Entropy Reconstruction

Extractor Model Generation

Latency 1.4 ms 1.4 ms 2.4 ms 2.4 ms 2.2 ms

kMACs/pixel 30.1 34.0 53.0 31.5 56.4

3. Experimental Results

3.1. Ablation on Implicit Temporal Modelling

In Tab. 2. of the main paper, we conduct an ablation study to
compare explicit motion estimation with implicit temporal
modeling under different motion conditions. Motion am-
plitude is determined using a pretrained SEA-RAFT [13]
model to calculate the average motion between consecutive
frames, enabling categorization into large or small motion
content. Scene changes are identified manually. Tab. 1 lists
the sequences categorized by motion type.

3.2. Results on Rate-Control

Rate control is an essential feature for video codecs, par-
ticularly for applications like streaming and real-time com-
munication. By adjusting the quantization parameter (qp),
DCVC-RT achieves effective rate-control. Fig. 3 illustrates
this capability, showcasing how DCVC-RT can modulate



Table 3. BD-Rate (%) comparison in YUV420 colorspace. All frames with intra-period=–1.

UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DCVC-FM (fp16) −16.8 −8.0 −15.4 −30.2 −37.5 −20.2 −21.3

DCVC-RT (fp16) −24.0 −14.8 −16.6 −21.0 −27.3 −22.4 −21.0

DCVC-RT (int16) −21.0 −12.3 −14.8 −20.0 −26.4 −15.0 −18.3

DCVC-RT Large (fp16) −31.1 −22.1 −27.7 −32.1 −37.7 −34.0 −30.8

DCVC-RT Large (int16) −27.7 −19.6 −25.9 −31.1 −37.0 −24.2 −27.6

Table 4. BD-Rate (%) comparison in RGB colorspace. All frames with intra-period=–1.

UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HM-16.25 43.2 49.5 49.9 45.2 39.9 47.7 45.9

DCVC-DC 9.2 0.0 14.9 5.3 −7.8 87.7 18.2

DCVC-FM −11.0 −1.3 −11.5 −26.6 −33.8 −15.4 −16.6

DCVC-FM (fp16) −10.4 −1.1 −11.2 −26.5 −33.7 −12.1 −15.8

DCVC-RT (fp16) −17.2 −6.8 −11.3 −15.8 −21.3 −11.4 −14.0

DCVC-RT (int16) −13.1 −3.9 −9.2 −14.8 −20.4 −3.2 −10.8

DCVC-RT Large (fp16) −25.0 −14.8 −22.9 −27.5 −32.4 −24.4 −24.5

DCVC-RT Large (int16) −20.5 −11.9 −20.9 −26.5 −31.7 −13.5 −20.8

bitrates effectively.

3.3. Per-Module Complexity Analysis

Tab. 2 presents a per-module complexity analysis, detailing
the average inference time and the corresponding MACs
for each module. Note that since both our encoding and
decoding pipeline both do not execute all modules (e.g.,
reconstruction generation is skipped during encoding), the
sum of latencies does not equal the overall latency.

3.4. Interpolation for Arbitrary Rates

In the proposed rate-adjustment module bank, we learn 64
rate points to accommodate different rates within a single
model. These modules include vectors for latent modulation
and the factorized modules for coding z. In practice, we
can expand the supported rate number to arbitrary larger by
performing interpolation in the module bank. Specifically,
to achieve a rate between the i-th and the i+ 1-th module,
we perform linear interpolation between the two vectors to
obtain an intermediate vector for latent modulation. For the
factorized module, we directly select the nearest module for
probability estimation. In Fig. 4, we evaluate it to achieve
128 different rates (64 original and 64 interpolated) in a
single model, and it demonstrates a very smooth quality
adjustment.

3.5. Model Integerization Results

Maintaining calculation consistency across different devices
is critical for video codecs, as encoding-decoding inconsis-
tencies can lead to errors in entropy coding and ultimately
yield corrupted reconstructions. Fig. 5 (left) shows how
nondeterministic floating-point calculations can accumulate
errors over time, producing visible artifacts after around 30
frames. In DCVC-RT, model integerization addresses this
issue by facilitating model integerization and enforcing de-
terministic integer calculations. As shown in Fig. 5 (right),
this approach ensures cross-device consistency.

Tab. 3 and 4 present the rate-distortion performance of
DCVC-RT in int16 mode. Compared to fp16, the int16
model exhibits only a minor BD-Rate decrease of approxi-
mately 3%, demonstrating its practicality and effectiveness
for real-world applications.

3.6. Results on RGB Colorspace

In Tab. 4, we present the BD-rate comparison for the RGB
format under all frame intra period –1 settings. As depicted
in the table, DCVC-RT achieves an average 14.0% bits sav-
ing compared to VTM, which is comparable to 15.8% of
DCVC-FM. It demonstrate the high rate-distortion perfor-
mance of DCVC-RT.
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Figure 5. An example for cross-platform coding on YachtRide
sequence. We perform encoding on an NVIDIA A100 GPU and
perform decoding on an RTX 2080Ti.

3.7. Visual Comparison

To further demonstrate the superiority of DCVC-RT, we also
present the visual comparison with VTM [3] and DCVC-
FM [11] in Fig. 6. From these examples, we can observe
that DCVC-RT can reconstruct frames with more details
and clearer structures, even at lower bitrates. We offer video
visualizations and comparisons on our project page: https:
//dcvccodec.github.io/ .

3.8. Rate-Distortion Curves

In Fig. 7, we present the rate-distortion curves across all
tested datasets. On the low-quality range, DCVC-RT demon-
strates comparable or superior performance to DCVC-FM
and surpasses ECM, showcasing its exceptional performance.
However, we observe a performance decline at high rates.
This decrease can be attributed to the lightweight design of
DCVC-RT model, which has limited capabilities compared
to larger models. To examine this problem, we increase the
model capacity of DCVC-RT in Section. 3.9.

Table 5. Complexity analysis of DCVC-RT-Large. All methods
are tested in fp16 mode on an A100 GPU. The coding speed are
evaluated on 1080p videos. BD-Rate is calculated in YUV420
colorspace using VTM as anchor.

Model Average MACs Coding Speed
BD-Rate Enc. Dec.

DCVC-FM –21.3% 2642G 5.0 fps 5.9 fps

DCVC-RT-Large –30.8% 812G 89.3 fps 73.4 fps

DCVC-RT –21.0% 385G 125.2 fps 112.8 fps

3.9. Performance for a Large Model

In this paper, we primarily design a lightweight model to
accelerate coding. However, DCVC-RT can be easily ex-
tended to a larger model (DCVC-RT Large) by increasing
the number of channels and DCB blocks. As shown in Tables
3 and 4, the enhanced model capacity significantly improves
compression performance. On YUV420 colorspace, Our
large model, DCVC-RT-Large, achieves an average BD-Rate
of −30.8%, outperforming −21.3% of the advanced large
NVC model, DCVC-FM. On RGB colorspace, It achieves
a BD-Rate of −24.5%, compared to DCVC-FM’s −15.8%.
Furthermore, the performance drop at high bitrates observed
in the small model is effectively addressed in the large model,
confirming the conclusion in Section. 3.8. For high-range
rate points (calculated from qp = 42 to qp = 63), using
DCVC-FM as the anchor, DCVC-RT shows a BD-Rate
loss of 9.3% on UVG, whereas DCVC-RT-Large achieves
a slightly better BD-Rate of −1.3%. Despite its improved
performance, DCVC-RT-Large maintains significantly lower
complexity than DCVC-FM, as shown in Table. 5. Thanks to
its efficiency-driven design, it achieves an encoding speed of
approximately 90 fps. These results underscore the superior-
ity of DCVC-RT in the rate-distortion-complexity trade-off.
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Figure 7. Rate-distortion curves for MCL-JCV and HEVC datasets. All frames are tested with intra-period=–1 in YUV420 colorspace. We
show the whole quality range, relatively low quality range and relatively high quality range for each dataset.
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