Advancing Generalizable Tumor Segmentation with Anomaly-Aware
Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models

Supplementary Material

A. Dataset Details

Our study utilizes datasets encompassing tumors across 7
diseases and 6 organs, derived from both public and private
sources. We summarize all the datasets in Table 7.

A.1l. Public Datasets

KiTS23. This dataset is from the Kidney and Kidney Tumor
Segmentation Challenge [18], which provides 489 cases of
data with annotations for the segmentation of kidneys, renal
tumors, and cysts.

MSD. The datasets of liver tumor, pancreas tumor, colon
tumor, lung tumor, and brain tumor are part of the Med-
ical Segmentation Decathlon (MSD) [3], providing anno-
tated datasets for various tumors.

BraTS23. This dataset is part of the RSNA-ASNR-
MICCAI BraTS 2023 Challenge [1], comprising 1,251
multi-institutional, clinically-acquired multi-parametric
MRI (mpMRI) scans of glioma. The ground truth an-
notations include sub-regions used for evaluating the
enhancing tumor’ (ET), ’non-enhancing tumor core’
(NETC), and ’surrounding non-enhancing FLAIR hyperin-
tensity’ (SNFH). In this study, we adopt the whole tumor’
setting, which describes the complete extent of the disease,
for segmentation evaluation.

TotalSegmentator. TotalSegmentator [40] collects 1024
CT scans randomly sampled from PACS over the times-
pan of the last 10 years. The dataset contains CT images
with different sequences (native, arterial, portal venous,
late phase, dual-energy), with and without contrast agent,
with different bulb voltages, with different slice thicknesses
and resolution and with different kernels (soft tissue kernel,
bone kernel). A total of 404 patients showed no signs of
pathology, and their data are used in our study as healthy
samples for anomaly detection training.

A.2. Private Datasets

This dataset comprises a large number of high-resolution
T2-weighted 3D MRI images from a total of 400 patients.
We acquired one volume from each patient. The seg-
mentation ground truths are provided for each volume in
the dataset. All liver tumors and surrounding normal tis-
sues were segmented manually by one radiologist and con-
firmed by another. During the annotation phase, the radiolo-
gists are also provided with the corresponding post-surgery
pathological report to narrow down the search area for the
tumors. All the MRI scans share the same in-plane dimen-
sion of 512 x 512, and the dimension along the z-axis ranges

from 85 to 225, with a median of 155. The in-plane spacing
ranges from 0.45 x 0.45 to 0.62 x 0.62 mm, with a median
of 0.53 x 0.53 mm, and the z-axis spacing is from 3.0 to 5.5
mm, with a median of 4.2 mm.

A.3. Preprocessing

We adopt similar data processing strategies as used in
MAISI [16]. For CT images, the intensities are clipped to
a Hounsfield Unit (HU) range of —1000 to 1000 and nor-
malized to a range of [0,1]. For MR images, intensities
are normalized such that the Oth to 99.5th percentile values
are scaled to the range [0, 1]. Intensity augmentations for
MR images include random bias field, random Gibbs noise,
random contrast adjustment, and random histogram shifts.
Both CT and MR images undergo spatial augmentations,
such as random flipping, random rotation, random intensity
scaling, and random intensity shifting.

B. More Qualitative Analysis.

For qualitative analysis on BraTS23 [1], we present visual-
izations of segmentation results in Fig. 6. This shows that
our approach achieves much better zero-shot cross-modality
generalization performance compared with other competing
methods.

C. Additional Ablation Experiments

In line with the ablation study setting in the main paper,
where the model is trained on the KiTS23 dataset and four
CT tumor datasets from MSD, including colon, pancreas,
lung, and hepatic vessel tumors, followed by testing on the
MSD liver and brain tumor datasets to evaluate generaliza-
tion to unseen tumors and modalities, we conduct extensive
ablation studies for further evaluation.

Significance of Multi-scale Feature Aggregation We ag-
gregate cross-attention matrices between text-attribution
keys and pixel queries across three feature levels to generate
the AOVA maps. We conduct ablation experiments to exam-
ine the efficacy of utilizing multi-scale image features from
the MAISI VAE encoder. The outcomes, elucidated Tab. 8,
provide a comprehensive understanding of the performance
gains achieved through multi-scale feature aggregation for
constructing AOVA maps, compared to using single-level
image features.

Effectiveness of Latent Space Inpainting. We demon-
strate the impact of using versus not using training-free
latent space inpainting (LSI) strategy when generating



Data Source | Modality Dataset Name Segmentation Targets Number of scans
KiTS23 [18] Kidney Tumor, Kidney Cyst 489
MSD-Colon [3] Colon Tumor 126
CT MSD-Liver [3] Liver Tumor 131
MSD-Hepatic Vessel [3] Hepatic Vessel Tumor 303
Public MSD-Lung [3] Lung Tumor 64
MSD-Pancreas [3] Pancreas Tumor 281
TotalSegmentator [40] Kidney, Lung, Pancreas, Colon, Liver, Brain 404
MRI MSD-Brain [3] Gliomas 484
BraTS23 [1] Gliomas 1251
Private MRI in-house dataset Liver Tumor 400

Table 7. Details of Datasets.
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Figure 6. Qualitative visualizations of zero-shot segmentation results on BraTS23 [1].

H MSD Liver Tumor ‘ MSD Brain Tumor
‘ DSCt NSD?T [ DSCt NSD?T

Feature Levels

Level 1 62.07 72.16 43.40 45.33
Level 2 62.28 72.49 44.92 46.84
Level 3 62.13 72.35 43.88 45.96

Aggregation | 63.23 73.58 47.51 49.75

Table 8. Ablation study of multi-scale feature aggregation for con-
structing AOVA maps. The DSC and NSD are reported. The best
result is in light blue.

pseudo-healthy equivalents in Tab. 9. Directly applying
MAISI for the generation leads to substantial changes in the
healthy regions of the target organ (also shown in Fig. 3),
which subsequently decreases segmentation performance.
In contrast, our strategy effectively preserves details in the
organ that are unaffected by the disease, underscoring the
importance of modifying the generation process of the orig-

H MSD Liver Tumor ‘ MSD Brain Tumor
\ DSCt NSD?T ‘ DSCt NSD?t

DiffuGTS prars1 60.36 70.31 30.55 32.74
DifftuGTSararsr + LSI | 63.23 73.58 47.51 49.75

Method

Table 9. Ablation study on leveraging the latent space inpainting
(LSI) strategy to generate pseudo-healthy equivalents, compared
to directly using MAISI for generation. The DSC and NSD met-
rics are reported.

inal MAISI [16] through latent space inpainting strategy.
Additionally, this approach is entirely training-free, avoid-
ing the computational costs associated with retraining or
fine-tuning a foundational diffusion model. The illustration
of the one-step reverse process of the inpainting strategy is
shown in Fig. 7.

Is the improvement solely attributed to the MAISI? To
leverage the capabilities of the medical foundational dif-
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Figure 7. The illustration of the one-step reverse process of the inpainting strategy.

H MSD Liver Tumor ‘ MSD Brain Tumor

Method I DSCT  NSDf | DSCT  NSDf
ZePT [22] 5916 6872 | 1954  22.02
Malenia [23] 59083 7008 | 1983  22.58

ZePT [22] + MAISI [16] 60.16 70.14 27.21 29.53
Malenia [23] + MAISI[16] | 60.28 70.22 27.86 29.94
DiffuGTS 63.23 73.58 47.51 49.75

Table 10. Comparisons between DiffuGTS and existing methods
combined with MAISI.

fusion model, we introduce a series of sophisticated de-
signs and demonstrated their effectiveness through ablation
studies. Additionally, we conduct further experiments to
show that the performance improvements are not merely
due to utilizing the medical foundational diffusion model,
but largely stemmed from our innovative designs. To vali-
date this, we apply the MAISI VAE encoder to some exist-
ing methods and use MAISI to refine the masks generated
by these methods.

The comparison results are shown in Tab. 10. We ob-
serve that using the VAE encoder from MAISI for image
feature extraction and employing MAISI’s generative capa-
bility to further refine the masks enhances the performance
of existing methods. This supports our motivation for lever-
aging foundational diffusion models for advanced zero-
shot tumor segmentation. Furthermore, even when existing
methods benefit from MAISI’s capabilities and knowledge,
DiffuGTS consistently outperforms them. This demon-
strates that the improvement in zero-shot generalization
performance is not solely due to the foundational diffu-
sion model, but also attributed to our innovative designs,
which effectively unleash the potential of utilizing founda-
tion diffusion model for generalizable tumor segmentation.
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(1) Misleading prompts: An abnormal CT scan of Liver Tumor

(2) Misleading prompts: A normal CT scan of lung

Figure 8. How the model processes misleading text prompts.

D. Model Robustness Analysis

In Fig. 8, we show how our model handles misleading
prompts: (1) a disease that is not present, and (2) using
a lung-related prompt on a brain scan. The AOVA maps
generated by these prompts exhibit no strong activation, in-
dicating that the model recognizes that none of the image
content is relevant to the text prompts and therefore does
not predict any foreground mask. This further demonstrates
that our model has effectively learned the correlations be-
tween visual features and textual descriptions, achieving a
genuine understanding of anatomical structures.

E. Explanation of ‘“Pseudo-Healthy” Images

We would like to further clarify that the generated pseudo-
healthy images are not actual healthy images. Similar
to many diffusion-based medical anomaly detection meth-
ods [5, 41], the primary purpose of generating these pseudo-
healthy images is to segment tumors by highlighting the dif-
ferences between the original image and the generated im-
age. Ideally, the generated image should exhibit significant
changes in the tumor region while preserving the non-tumor
areas of the original image, regardless of whether those ar-
eas are healthy. Thus, the term “ideal” here specifically
refers to tumor segmentation, rather than implying the gen-
eration of a completely healthy image. In other words, the



generated pseudo-healthy images only need to preserve the
non-tumor areas of the original image while significantly al-
tering the tumor regions, rather than striving to create a fully
healthy image. Additionally, whether non-tumor regions of
an organ with tumors can still be considered “healthy” is a
broader discussion beyond the technical scope of this pa-
per. To prevent any misunderstandings, we refer to these
generated images as “pseudo-healthy” images.

F. Analysis of Potential Data Leakage

We used MSD, KiTS23, BraTS23, and an in-house liver tu-
mor dataset for evaluation. Among these, only the MSD
overlaps with the dataset used during MAIST’s training. A
key concern is whether the MAISI framework inadvertently
introduces label information leakage that could compromise
the model’s training independence. In this section, we con-
duct a rigorous analysis of this critical issue. Apparently,
the performance improvement of our framework is not ex-
clusively derived from the MAISI integration. As validated
in Tab. 10, the principal performance improvement mainly
stems from our innovative designs. Furthermore, we clar-
ify that our framework does not leak any label informa-
tion from MAISI related to the MSD dataset into down-
stream testing. First, we use the internal features of the
MAISI VAE encoder. The MAISI VAE encoder and de-
coder were trained on the volume reconstruction task, which
only involved image data and did not use any mask anno-
tations. Therefore, using the MAISI VAE encoder’s inter-
nal features to train the AOVA maps poses no risk of data
leakage. Second, the diffusion model in MAISI is trained
on the MSD dataset to synthesize tumors explicitly condi-
tioned on a tumor mask via ControlNet. In contrast, our
method utilizes a coarse tumor mask implicitly through a
repaint mechanism, forcing the model to generate pseudo-
healthy organs instead of tumors. This fundamental diver-
gence in conditioning strategies shifts the MAISI’s infer-
ence paradigm from an in-distribution scenario (tumor gen-
eration aligned with MAISI’s training data) to an out-of-
distribution scenario (synthesizing healthy anatomy from
anomalous inputs). This approach essentially prevents the
diffusion model from utilizing any memorized label infor-
mation. If data leakage were to occur, the model would
generate the tumor rather than the pseudo-healthy organ we
intend. Additionally, generating pseudo-healthy organs on
MSD is not involved in MAISI’s training. These support
the claim that our framework does not leak any label infor-
mation from MAISI related to the MSD dataset into down-
stream segmentation testing. Moreover, the superior perfor-
mance of DiffuGTS on KiTS23, BraTS23, and our in-house
liver tumor dataset—all excluded from the MAISI founda-
tion model’s training data—demonstrates the generalizabil-
ity and robustness of our proposed strategies.

G. Limitations and Future Work

Our method, through carefully crafted innovative designs,
has unleashed the potential of medical foundational diffu-
sion models for advanced zero-shot 3D tumor segmenta-
tion. However, it remains constrained by the capabilities
of the underlying medical foundational diffusion model. As
the MAISI VAE is designed as a foundational model for 3D
CT and MRI, our research is similarly limited to these imag-
ing modalities, leaving other modalities, such as 2D X-ray,
unaddressed. In future research, we aim to explore zero-
shot multimodal models that encompass a broader range of
imaging modalities and clinical scenarios. Furthermore, as
medical foundational diffusion models continue to evolve,
our method stands to benefit from these advancements, with
the potential for further enhancement in performance.
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