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A Background

What is Cryo-Electron Tomography (Cryo-ET)? Cryo-Electron Tomography (cryo-ET) is an
advanced cellular imaging technique that produces three-dimensional views of cellular samples at
nanometer resolution [1, 2]. In cryo-ET, biological samples are first vitrified at cryogenic temperatures
below -150°C, preserving their native structures without chemical fixation or dehydration [3]. During
imaging, the sample is tilted through a series of angles (typically £60° with 1-3° increments) while
being exposed to an electron beam, producing a tilt-series of 2D projection images [4, 5]. These
projections are then computationally reconstructed into a 3D volume [6, 7] called a tomogram, which
provides a comprehensive view of the cellular landscape. This technique is particularly powerful
because it allows visualization of macromolecular structures in their native cellular context, making
it fundamental for in situ structural biology [8, 9].

e
€~ |Electron Beam

+60°

Tilt

Cell sample

Tomogram

Projection Image =

Figure 1: An illustration of cryo-ET imaging process.

What is Cryo-ET Subtomogram Alignment? Subtomogram alignment is a crucial computational
process in cryo-ET analysis [10, 3, 4] that enables high-resolution structure determination from
tomographic data. The process involves extracting multiple copies of similar particles (subtomograms)
from tomograms and aligning them in 3D space to generate an averaged structure with improved
signal-to-noise ratio [ 1]. This alignment presents significant computational challenges [12] due to
several factors: (1) the complexity of three-dimensional rotational and translational alignment [13],
(2) the inherently low signal-to-noise ratio of cryo-ET data compared to single-particle cryo-EM [14],
and (3) the computational intensity of processing large volumetric datasets. Alignment algorithms
typically employ sophisticated cross-correlation methods and can be performed using either angular
searches or fast rotational matching approaches [15, 16]. The process is iterative, with each round
of alignment improving the average structure until convergence is reached [15, 17]. Successful
subtomogram alignment is essential for achieving higher resolution structural information from
cryo-ET data and understanding macromolecular organizations in their native cellular context [8].
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Figure 2: Workflow of Subtomogram Alignment.

B Subtomogram Visualization

B.1 Example of Input Subtomograms

To demonstrate the effectiveness of our method, we selected five representative macromolecular
structures. As shown in Fig. 3, we visualized these structures through 2D slice representations of their
corresponding subtomograms, simulated at varying signal-to-noise ratios (SNRs). The visualization
spans from high-quality conditions (SNR = 100), where structural features are clearly visible, to
extremely noisy scenarios (SNR = 0.01) that closely mimic challenging experimental conditions.
This comprehensive visualization not only illustrates the challenging nature of subtomogram analysis
but also provides a robust testbed for evaluating our method’s performance across different noise
conditions typically encountered in real experimental scenarios.

B.2 2D Slice Representation

As visualized in Fig. 4, we present the 2D slice representations of subtomograms at different
processing stages. For each macromolecular structure, the visualization sequence shows the original
input subtomogram, followed by three augmented versions, the target subtomogram, and the final
aligned result. This visual representation effectively demonstrates the transformations that occur
during our processing pipeline.

C Preliminaries

In this section, we establish our notation and revisit the definitions of group actions, equivariance and
discuss the equivariance properties relevant to ViTs.

Notation. Let H()) denote the feature map at layer [ (with H(®) representing the input image). The
c-th channel of this feature map is denoted by Hg).

We represent the filters at layer [ by <I>$,?, where @gf is the m-th filter. The n-th channel of this filter
is denoted by <I>$,ll)7n.

Group Actions. Consider a group G acting on a set X via a function o : G x X — X satisfying
the following properties:

1. Forall g,h € Gand x € X,
a(g, a(h, x)) = a(gh, ). (0
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Figure 3: 2D slices representation of input subtomograms.
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Figure 4: 2D slices representation of processed subtomograms.

2. Forallx € X,
ale,z) = x, 2)

where e is the identity element of G.

Under this action, X is referred to as a (left) G-set.

Equivariance. Let X and Y be G-sets with group actions v : G X X - X and3: G xY =Y,
respectively. A function f : X — Y is called equivariant if, forall z € X and g € G,

flalg, x)) = B(yg, f(x)). (©)
If f is invariant under the action of G, meaning that (3 is the identity map, then

flalg, x)) = f(=). @)

Equivariance of ViT module. The Vision Transformer (ViT) architecture consists of a patch em-
bedding layer, positional encoding, transformer blocks, and MLP layers. As highlighted by (author?)
[18], the patch embedding layer is neither shift- nor rotation-equivariant due to downsampling effects,
which disrupt spatial consistency. Additionally, both absolute positional encoding [19] and relative
positional encoding [20, 21] are not equivariant to shifts or rotations. While the normalization, global
self-attention, and MLP layers are shift-equivariant, special design is required to achieve rotation
equivariance [22, 23].



D Detailed Architecture

D.1 Feature Extraction and Patch Embedding

As shown in Fig. 5, our feature extraction and patch embedding pipeline implements the Polyshift
module described in Section 4.2. The Polyphase Feature Extractor anchors input and target volumes
using polyphase decomposition for shift-equivariance following Eq.(6). A group-equivariant CNN
processes each polyphase component X(p,q,r) independently, extracting features Fi through multi-
scale extraction with stride 2i while maintaining shift-equivariance. These spatial features then
pass through a Shift-Equivariant Positional Encoder using 3D convolution with circular padding
and 4x4x4 stride. Finally, a Feature Comparator analyzes relationships between input and target
embeddings through parallel computations of differences, products, and concatenations, producing a
combined embedding that captures both spatial and relational information.
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Figure 5: Feature Extraction and Patch Embedding.



D.2 Multi-Axis Rotation Positional Encoding

As illustrated in Fig. 6, the Multi-Axis Rotation positional Encoding (MARE) module enhances both
rotational and translational equivariance by processing features along three axes (d,h,w) independently.
Following Section 4.3, for each axis, MARE first computes rotation parameters using learnable
matrices, then generates rotation matrices through skew-symmetric matrix transformation, and
applies them to queries and keys while preserving original position vectors. The attention mechanism
combines the rotated features with scaling factor to stabilize training, and the final attention output
integrates information across all axes. This design ensures rotation equivariance through axis-specific
transformations while preserving translation equivariance by maintaining relative spatial relationships
in the attention computation.
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Figure 6: Workflow of MARE.

D.3 Transformer Block

As shown in Fig. 7, our BOE-ViT transformer block processes concatenated features and embeddings
through three sequential stages. First, the MARE module applies axis-wise attention and rotational
positional embedding to enhance spatial equivariance. Then, a standard feed-forward network with
two linear layers processes the features. Finally, the transformer outputs aligned input, predicted pa-
rameters, processed features, and updated embeddings, effectively combining equivariance-enhanced
attention with traditional vision transformer architecture.
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E Mathematical Analysis of Equivariance Properties

E.1 Shift Equivariance Analysis of Polyshift Module

In this section, we provide detailed proofs for the equivariance properties of our Polyshift module. We
first prove the fundamental equivariance property of the polyphase anchoring operator (Lemma 4.1),
followed by an important corollary about the nature of the induced translations. We then establish the
equivariance of the complete module including strided convolutions (Lemma 4.2).

Lemma E.1 (Polyphase Anchoring Equivariance). Let P be the polyphase anchoring operator and
Tg denote a translation operator that shifts X spatially by g = (9p, gm, gw). Then, for multi-
subtomograms X € RBXCXDXHXW ‘there exists a translation g' = (g, g, Gy ), corresponding
to an integer multiple of the patch size s = (sp, Sy, sw ), such that:

P(TgX) = Tg (P(X)) )

This implies that polyphase anchoring is shift-equivariant up to a known shift g’ dependent on the
original shift g and the patch size s.

Proof. By definition of polyphase decomposition, the input tensor X is divided into polyphase
components:

X(par) = {X.isppjesu+ak-sw+rlisJ, k € Zxo} (6)
For each component, the norm is computed:
Npar) = 1Xp.qnlp @
When applying translation 7T, we have:
P(TgX) = TAI}\TgX Tg- X ®)

where T, | T, x Tepresents the anchoring shift determined by:
g

(ﬁa (jv 72) = arg (1;1(?1() N(p,q,r)Tgx 9
Similarly for the original input:
P(X) = TAI%|X -X (10)

Due to the circular padding in the polyphase decomposition, the relative ordering of norms N, 4 )
either remains unchanged or undergoes a cyclic permutation under translation. Therefore, there exists
a translation g’ € G such that:

T - X (an
P(X) (12)

Corollary E.1 (Integer Stride Translation). The translation g’ in Lemma E.| shifts P(X) by integer
multiples of the patch size s = (sp, su, sw). Specifically:

9p =kpsp, gu =kusu, gw =kwsw (13)
for some integers kp, ki, kw € Z.
Proof. According to Algorithm 1, the polyphase component with maximum norm determines the

anchoring shift. Under translation 7g, this maximum norm component must belong to the same
equivalence class modulo s. Therefore,

P(X)O::sD,O::sH,O::sW = arg max HP(X)i::sD,j::sH,k::sW H (14)

P(X)izisp.gisgrokesyy
where i < sp,j < sg,k < sw.

This periodic structure ensures that g’ must be integer multiples of the patch size in each dimension.
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Lemma E.2 (Strided Convolution Equivariance). Let P be the polyphase anchoring operator and *g
denote strided convolution with stride s. For any translation ’Tg and convolution kernel h, when the
stride sizes in polyphase anchoring (s1) and convolution (s3) are equal (s1 = sy = s), the following
equivariance property holds:

P(TeX) #s h = T (P(X) #s h) (15)
where g’ is as defined in Lemma E.I and Corollary E. .

Proof. The strided convolution can be decomposed as:

X 45 h = Dy(X + h) (16)
where Dy represents downsampling with stride s.
Then:
P(TeX) #s h = Ds(P(TgX) + h) (17)
= Dg(TgP(X)*h) (byLemma E.1) (18)
= Dg(Tg/(P(X) *h)) (convolution equivariance) (19)
= Tg'Ds(P(X) xh) (since g’ is multiple of s) (20)
= Te (P(X) s h) 2

The last equality holds because g’ is an integer multiple of the stride s in each dimension (by Corollary
E.1), allowing the downsampling and translation operations to commute.

E.2 Rotational Equivariance Analysis of MARE

Lemma E.3 (MARE Rotation Equivariance). Let R¢ denote a global rotation with rotation matrix
Ry, and let A, be the learnable parameter matrices for each axis a € {d,h,w}. The MARE
attention mechanism satisfies:

MARE(QR},, KR, V,p,{A.})

(22)
=R, -MARE(Q,K,V,p,{A,})
Proof. For each axis a € {d, h, w}, the rotation parameters are computed as:
Wo = Aqp (23)
When a global rotation R is applied to the input, these parameters transform as:
wi, = A, (Ryp) = Ry(Aup) = Rpw, (24)
The skew-symmetric matrices are constructed as:
A 0 —Wq,, Way
Wa - Waq,z 0 —Wa,x (25)
~Wq,y Waz 0
The axis-specific rotation matrices are computed using the matrix exponential:
R, = exp(W,) (26)
Under global rotation, these matrices transform as:
R, = RyR.R,, 27)
For the rotated input features:
Q. = (QR})(R,)" = QR (RyR.R4)" (28)
= QR R4R, R} = QR/R,, (29)

11



Similarly for the keys:

K, =KR,R, (30)
The attention logits for each axis become:
Q.(K,)" = QR R RyR.K' (31)
= QR/R, K" (32)
=QK' (33)

The axis-specific attention output is:

KT
Attention, = softmax (Q> vV (34)
Vdy

The final MARE attention output transforms as:

KT

Attentionysgg = Z softmax (Q o ) (RyV) (35)
a€{d,h,w} k

= R¢ - Attentionyarg (36)

This completes the proof of rotation equivariance, showing that a global rotation of the input results in
a corresponding rotation of the attention output while preserving the learned axis-specific rotational
patterns.

F Experiments Settings

F.1 Training Details

The model was implemented in PyTorch with CUDA for GPU acceleration and trained on a single
NVIDIA V100 GPU using mixed-precision to efficiently process subtomograms of size 32 x 32 x 32
from simulated and augmented SNR100 datasets.

Models were pre-trained for 100 epochs and fine-tuned for an additional 400 epochs on the con-
catenated training set. Testing was performed on low-SNR datasets (SNR: 0.1, 0.05, 0.03, 0.01)
generated from the same complexes to simulate realistic experimental conditions, with each test
dataset containing 5000 subtomograms.

The BOE-ViT architecture was initialized with 4 transformer blocks, 4 attention heads, a feed-forward
hidden dimension of 256, and a transformer hidden dimension of 60. The Polyshift patch embedder
used a 3D patch size of (4, 4, 4). Training was conducted with a batch size of 4 subtomograms, using
the AdamW optimizer with an initial learning rate of 1 - 10~ and a weight decay of 2 - 1078,

F.2 Introduction of Baselines

Here, we provide a brief introduction to the state-of-the-art methods used as comparative baselines
for cryo-ET alignment, as follows:

e H-T align [24]: A Fourier-based rotational alignment method designed to improve accuracy
in low SNR and high tilt angle conditions.

* F&A align [25]: An efficient alignment algorithm leveraging spherical harmonics and
Wiener-filtered corrections for reference-free subtomogram alignment.

* Gum-Net [15]: An unsupervised CNN-based model for 3D geometric correspondence,
optimized for noisy Cryo-ET data with substantial error reduction and speedup. The three
architectures of Gum-Net can be summarized as: Gum-Net MP uses max pooling for feature
extraction, Gum-Net AP employs average pooling to optimize feature aggregation, and
Gum-Net SC simplifies the matching module by computing only one correlation map.

e Jim-Net [17]: A multi-task CNN-based model that simultaneously clusters and aligns
subtomograms using unsupervised pair-matching alignment.

12



F.3 Mathematical Definition of Metrics

Error Metrics To quantitatively evaluate subtomogram alignment accuracy, we compute both
rotational and translational errors between the estimated and ground truth parameters. For rotation
matrices Regtimated and Rypye, the rotational error e, (in degrees) is defined as:

tr(RE -1
€rot = ArCCOS (I(Res‘Rgt) > 180

™

5 37

where Reg, Ryt € SO(3) are rotation matrices, tr(-) denotes the matrix trace. This formulation
yields rotation errors in degrees within the range [0°, 180°]. The translational error e; (in voxels) is
calculated as the Euclidean distance between estimated and true positions:

€trans = Htest - tgt”Q (38)
Signal-to-Noise Ratio (SNR) The Signal-to-Noise Ratio quantifies image quality through the
Pearson’s correlation coefficient (c) between two optimally aligned subtomograms of identical
structure:

__°c  ._ (i —2)(yi — 9)
S Mo T S

where x; and y; represent corresponding voxel intensities in the two subtomograms, and Z,  their
respective means. In cryo-ET, SNR typically ranges from 0.01 to 0.1 due to dose fractionation across
tilt series, increased sample thickness at high tilts, and complex cellular backgrounds. This inherently
low SNR poses significant challenges for accurate alignment, necessitating robust computational
methods.

(39)

G Further Experiments

We conduct extensive experiments to validate our BOE-ViT framework. First, we evaluate our
method on five challenging cryo-ET datasets across various SNR levels, demonstrating superior
alignment accuracy compared to state-of-the-art approaches in appendix G.1. Second, we explore
the sensitivity of BOE-VIiT to key hyperparameters including patch size, batch size, attention heads,
hidden dimension, and loss parameters, in appendix G.2, providing insights for optimal model
configuration. In the Tables 1-9, each cell reports the mean and standard deviation of the rotation
error (first term) and translation error (second term).

G.1 Performance Across Diverse Macromolecular Structures

We evaluated BOE-ViT on five representative macromolecular complexes under varying SNR con-
ditions. As shown in Tables 1-5, BOE-ViT demonstrates superior performance and robustness
compared to existing methods, including H-T align, F&A align, four variants of Gum-Net (Gum-Net
MP, Gum-Net AP, and Gum-Net SC, Gum-Net) and Jimnet.

Method SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 1.67£1.06, 6.31£5.01  2.094+0.87, 7.65+4.56  2.22+0.74, 8.10+4.43  2.40£0.57, 10.93+4.97
F&A align 1.71£1.08, 6.63+£4.96  2.06+0.90, 7.76+4.67 2.23+0.74, 8.48+4.62 2.37£0.56, 10.94+4.98
Gum-Net MP  1.38£0.75, 5.25+3.53  1.50+0.76, 5.70£3.65  1.594+0.76, 6.08+£3.54  1.66+0.77, 7.06+£3.39
Gum-Net AP 1.25+0.76, 4.75+3.37  1.3940.76, 5.35£3.49  1.534+0.75,5.81£3.46  1.65+0.77, 7.02+3.35
Gum-Net SC =~ 1.26+0.77, 4.83+3.58  1.424+0.77,5.43+£3.62  1.53+0.76,5.73£3.47  1.68+0.76, 6.96+3.52
Gum-Net 0.75+0.77,2.9943.17  0.874+0.76, 3.49+£3.31 1.05+0.71, 3.964+2.77  1.424+0.78, 5.66+3.53
Jimnet 0.78+0.71,3.15£3.13  1.03+0.74, 4.14+£3.58  1.18+0.73, 4.684+3.34  1.60+0.75, 6.55+3.43
BOE-ViT 0.33+0.16, 2.41+0.84  0.34+0.15, 2.31+0.81  0.34+0.16, 2.25+0.80  0.33+0.15, 2.26+0.78

Table 1: RNA polymerase-rifampicin complex (PDB ID: 116V) subtomogram alignment accuracy.

13



Method

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

H-T align
F&A align
Gum-Net MP
Gum-Net AP
Gum-Net SC
Gum-Net
Jimnet

0.94+0.95, 3.75+4.03
1.06+1.06, 4.31+4.41
1.13+0.74, 4.274+3.09
0.98+0.67, 3.72+2.74
1.07+0.73, 4.02+3.03
0.46+0.54, 1.80+1.90
0.39+0.52, 1.67+2.01

1.74+1.02, 6.314+4.60
1.8540.99, 6.99+4.85
1.30+0.75, 4.80+3.11
1.20+0.72, 4.454+2.85
1.26+0.76, 4.56+3.07
0.71+£0.63, 2.55+2.12
0.64+£0.60, 2.42+2.33

2.2140.75, 8.69+4.56
2.18+0.79, 8.69+4.55
1.4540.76, 5.45+3.09
1.40+0.74, 5.294+3.02
1.47+0.77, 5.48+3.14
1.12+0.73, 3.93+2.45
0.99+0.72, 3.71+£2.89

2.37+0.55, 11.58+5.02
2.39+0.58, 11.31+4.83
1.6640.77, 6.99+3.28
1.6440.77, 6.97+3.33
1.65+0.76, 6.89+3.33
1.45+0.76, 5.94+3.32
1.58+0.76, 6.69+3.38

BOE-ViT

0.33+0.15, 2.30+0.80

0.34+0.16, 2.27+0.81

0.35+0.15, 2.27+0.75

0.34+0.15, 2.24+0.78

Table 2: RNA polymerase II elongation complex (PDB ID: 6A5L) subtomogram alignment accuracy.

Method

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

H-T align
F&A align
Gum-Net MP
Gum-Net AP
Gum-Net SC
Gum-Net
Jimnet

0.61£0.87, 2.64+£3.55
0.64+0.97, 2.96+3.99
1.02+0.70, 4.07+3.16
0.87+£0.65, 3.56+2.78
0.96+0.71, 3.83+£3.13
0.47+0.57, 1.94+2.26
0.30+0.47, 1.42+2.01

1.62+1.14, 6.08+4.92
1.68+1.16, 6.32+4.91
1.25+0.78, 4.89+3.30
1.12+0.74, 4.45+3.00
1.2240.79, 4.76+3.28
0.68+0.64, 2.61£2.25
0.5140.58, 2.30£2.36

2.15+0.88, 8.49+4.72
2.12+0.89, 8.39+4.79
1.38+0.75, 5.41+3.31
1.2940.74, 5.07+£3.09
1.3840.76, 5.28+3.33
0.93+0.68, 3.62+2.32
0.74+0.62, 3.13£2.63

2.38+0.56, 11.36+5.13
2.354+0.59, 11.20+5.00
1.65+0.78, 6.79+3.08
1.60+£0.81, 6.69+3.11
1.6540.78, 6.82+3.20
1.38£0.78, 5.65+3.31
1.5040.76, 6.30+£3.13

BOE-ViT

0.33£0.15, 2.35+0.83

0.3410.16, 2.27+0.79

0.34+0.15, 2.24+0.77

0.34+0.16, 2.21£0.77

Table 3: Spliceosome (PDB ID: SLQW) subtomogram alignment accuracy.

Method

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

H-T align
F&A align
Gum-Net MP
Gum-Net AP
Gum-Net SC
Gum-Net
Jimnet

1.16£1.04, 4.43+4.21
1.54+1.12, 6.39+5.19
1.5840.83, 5.51+£3.07
1.30+0.79, 4.71£2.76
1.4140.79, 4.90+2.94
0.73+0.81, 2.70£2.87
0.49+0.70, 1.99+2.43

2.131+0.84, 8.79+4.77
2.1740.80, 9.39+5.09
1.71+0.80, 6.28+3.16
1.58+0.80, 5.94+3.05
1.63+0.79, 5.98+3.11
1.19+0.84, 4.23£3.01
1.09+0.86, 4.14+3.30

2.34+0.61, 10.59+4.98
2.354+0.58, 10.81+4.93
1.70+0.80, 6.72£3.13
1.63£0.81, 6.70£3.20
1.66+0.80, 6.54£3.15
1.434+0.79, 5.67+2.96
1.3340.83, 5.19+£3.28

2.3610.59, 11.56+4.91
2.40+0.55, 11.81+4.89
1.70+0.78, 8.27+3.58
1.68+0.78, 8.14+3.51
1.7140.77, 8.35+3.64
1.76+0.75, 10.46£5.10
1.65+0.78, 7.60+3.62

BOE-ViT

0.34-+0.15, 2.28-+0.81

0.341-0.16, 2.244-0.77

0.34+0.15, 2.274-0.80

0.34+0.15, 2.304+0.79

Table 4: Ribosome (PDB ID: 5T2C) subtomogram alignment accuracy.

Method

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

H-T align
F&A align
Gum-Net MP
Gum-Net AP
Gum-Net SC
Gum-Net
Jimnet

1.7240.99, 6.65+4.55
1.73+1.01, 6.694+4.71
1.40+0.80, 5.52+3.60
1.0540.69, 4.28+2.92
1.12+0.76, 4.47+3.30
0.68+0.64, 2.61+2.46
0.57+£0.56, 2.37+2.20

2.08+0.88, 7.47+4.46
1.9740.94, 7.26+4.67
1.43+0.78, 5.63+3.44
1.19+0.73, 4.78+3.04
1.24+0.78, 4.924+3.40
0.89+0.72, 3.13+2.68
0.72+0.64, 3.10+2.71

2.16+0.81, 8.42+4.47
2.2440.79, 8.59+4.69
1.53+0.76, 6.12+3.45
1.37+0.73, 5.64+3.22
1.38+0.77,5.71+£3.43
1.12+0.72, 4.25+2.73
0.88+0.66, 3.90+2.94

2.38+0.58, 11.22+5.03
2.39+0.56, 11.33+4.88
1.68+0.77, 7.30+3.33
1.66+0.77, 7.10+3.27
1.66+0.78, 7.16+3.35
1.46+0.78, 6.22+3.38
1.55+0.78, 6.75+3.47

BOE-ViT

0.33+0.15, 2.24+0.82

0.33+0.15, 2.24+0.80

0.33+0.15, 2.20+0.80

0.33+0.16, 2.21£0.77

Table 5: Capped proteasome (PDB ID: SMPA) subtomogram alignment accuracy.
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G.2 Parameter Exploration in BOE-ViT

Impact of Patch Size As demonstrated in Table 6, experimental analysis with varying patch
sizes (4, 8, and 16) reveals that smaller patches consistently achieve superior performance, partic-
ularly in translation accuracy. While rotation errors exhibit stability across different patch sizes
(approximately 0.33-0.34), translation errors increase monotonically with larger patches (from 2.38
to 4.14), indicating that finer-grained spatial partitioning is essential for preserving local geometric
information.

Patch Size

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

4
8

0.33540.153, 2.38040.840
0.336=:0.154, 3.662+1.739

0.337+0.155, 2.334+0.818
0.33940.156, 3.580+1.728

0.339+0.152, 2.301+0.801
0.340£0.153, 3.499+1.700

0.33740.153, 2.32040.803
0.33840.154, 3.5164+1.687

16 0.336+0.153,4.144+1.890  0.339+0.156,4.162+1.889  0.34140.153, 4.182+1.903  0.337+0.154, 4.1254+1.907

Table 6: Impact of patch size.

Impact of Batch Size The quantitative results in Table 7 demonstrate that our model maintains
consistent performance across batch sizes 4-16, with rotation errors stabilizing around 0.33-0.34.
However, increasing the batch size to 32 results in significant degradation of translation accuracy,
particularly at higher SNR levels. The optimal performance achieved with a batch size of 4 suggests

that smaller batches facilitate more precise optimization of alignment parameters.

Batch Size

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

4

0.335+0.153, 2.38040.840

0.337+£0.155, 2.33440.818

0.339£0.152, 2.301+0.801

0.337+0.153, 2.3204-0.803

8 0.335+0.154,2.5684+0.943  0.338+0.154,2.467+0.893  0.339+0.152, 2.412+0.860  0.338+0.154, 2.358+0.835
16 0.33540.153, 2.598+0.957  0.338+0.155, 2.4714+0.892  0.340+£0.153, 2.399+£0.875  0.33840.154, 2.300+0.813
32 0.335+0.153, 3.1254+1.223  0.338+0.155,2.970+1.112  0.340£0.152, 2.799+1.062  0.338+0.154, 2.528+0.940

Table 7: Impact of batch size.

Impact of Loss Parameters We employ a weighted loss function L(6,0) = a - MSE(6, ) +
B - MSE(¢, f), where « and 3 balance the contributions of rotation (f) and translation (¢) errors
respectively. As shown in Table 8, the configuration with a=1, 8=2 achieves optimal performance,
indicating that emphasizing translation error correction while maintaining rotational accuracy yields
the most favorable results. This finding aligns with our observation that translation estimation presents
greater challenges in the alignment task.

Loss Parameters

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

> O 20
o
(L [ IR 1)
DWW

=}

0.33440.153, 3.101£1.208
0.33440.153, 2.452+0.938
0.33440.153, 2.415£0.850
0.33540.153, 2.616+1.005
0.33540.153, 4.055+1.533

0.33740.155,2.971£1.134
0.33740.155, 2.381£0.888
0.33840.155, 2.365+£0.818
0.33740.155, 2.510£0.953
0.33840.155, 3.916+1.481

0.33940.152, 2.865+1.081
0.33940.152, 2.308+0.864
0.33940.153, 2.363+0.806
0.33940.152, 2.410£0.916
0.33940.152, 3.747+1.417

0.33740.154, 2.619+1.020
0.33840.154, 2.232+0.812
0.33640.154, 2.387+0.825
0.33740.153, 2.256+0.851
0.33840.153, 3.480£1.355

Table 8: Impact of loss parameters.

Impact of Attention Heads Systematic evaluation of different attention head configurations in
Table 9 identifies an optimal architecture with 4 heads, achieving minimal rotation (0.334-0.339)
and translation errors (2.24-2.32). This empirical finding suggests that 4 attention heads provide an
optimal balance between model capacity and computational efficiency, effectively capturing spatial
relationships without introducing redundant complexity.

Attention Heads

SNR 0.1

SNR 0.05

SNR 0.03

SNR 0.01

2 0.33540.153, 2.545+0.925  0.33740.155, 2.4514+0.892  0.340+0.152, 2.3844+0.860  0.337+0.153, 2.3074+0.838
4 0.33440.153,2.318+0.821  0.338+0.155, 2.2654+0.795  0.339+0.152, 2.2454+0.782  0.337+0.154, 2.2454+0.776
5 0.33310.153,2.341£0.847  0.33740.155, 2.30440.822  0.339+£0.152, 2.2674+0.797  0.337+£0.154, 2.2831+0.820
10 0.33440.153,2.363+0.829  0.33740.155, 2.3534+0.825  0.339+0.152, 2.3654+0.816  0.337+0.154, 2.399+0.838

Table 9: Impact of attention heads.
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