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A. Evaluation of Depth Anything V2
In this section, we present the evaluation of Depth Any-
thing V2 [15] on some common stereo datasets. To achieve
cross-scene robustness, the relative depth estimation models
are usually trained with a scale and shift (affine) invariant
loss [9] on the inverse depth space, thus predicting an affine
disparity with unknown scale and shift. Given an inverse
depth map predicted by Depth Anything V2 is z and its cor-
responding ground truth disparity map dgt, they must satisfy
the following affine transformation,

dgt = sz+ t, (1)

where s is the scale and t is the shift. For each image example,
we can use the least square to find the solution for the scale
and shift, ŝ and t̂. The aligned disparity map from the depth
estimate is computed as,

d̂ = ŝz+ t̂. (2)

The quality of the depth estimate of Depth Anything V2
can be accessed with the end-point error (EPE) between dgt

and d̂. To evaluate the scale consistency, we further compute
a ratio map between the ground truth disparity dgt and the
aligned disparity map d̂,

r =
dgt

d̂
, (3)

where d̂ is clamped with a minimum (set to 0.05) in advance
to avoid meaningless division.

The distribution of the values in r reveals the scale con-
sistency. If the depth estimate were scale-consistent, most
values in r approximate to 1, otherwise there must be many
ratios that deviate to 1. Therefore, we compute the standard
deviation of r to assess the scale consistency.

We perform evaluation on three realistic datasets,
KITTI 2015 [8], Middlebury (half resolution) [10] and
ETH3D [11], and two synthetic datasets, Scene Flow [7]
and CREStereo [4]. For the realistic datasets, we evaluate
on their entire trainsets, i.e., 200 examples for KITTI 2015,
15 samples for Middlebury, and 27 samples for ETH3D. For
Scene Flow and CREStereo, we evaluate on 200 random
samples from their trainsets.

Tab. 1 presents the quantitative results. Even given the
unknown scale and shift, disparity errors are large, espe-
cially for the synthetic Scene Flow [7] and CREStereo [4]
datasets, whose STD is very high too, indicating the scale
inconsistency within the image is serious. This is because
the synthetic stereo dataset is about unnatural scenes. As

Sceneflow CREStereo KITTI-2015 Middlebury-half ETH3D
EPE STD EPE STD EPE STD EPE STD EPE STD

8.04 3.31 5.10 3.30 2.08 0.74 5.00 0.11 0.65 0.40

Table 1. Examination of Depth Anything V2 on typical stereo
datasets via least-square affine alignment.

the stereo model is usually pre-trained on the synthetic
stereo dataset, the scale inconsistency of DEFOM poses
challenges for recovering disparity from its depth estimate.
In contrast, Depth Anything V2 presents better results on
realistic datasets. Although the EPE on Middlebury-half is
up to 5, it is mainly due to its high resolution. In contrast,
for two synthetic datasets, both the EPE and STD are larger,
indicating Depth Anything V2 does not predict depth maps
with good scale consistency.

Fig. 1 visualizes examples from Scene Flow, KITTI, Mid-
dlebury, and ETH3D. The last column is the ratio map with
a color bar. These visualizations further highlight the scale
inconsistency issue, especially in the Scene Flow dataset,
though some scale inconsistency is also evident in the real
datasets, albeit to a lesser extent. Despite this, synthetic
datasets, like Scene Flow, help to train the scale update mod-
ule, as they pose more challenges to scale recovery.



Left Image Ground Truth Depth Anything V2 Ratio Map

Figure 1. Visualization of the aligned depth estimate of Depth Anything V2 on some examples of the stereo datasets. Row 1-3: Scene Flow.
Row 4: KITTI 2012. Row 5: KITTI 2015. Row 6-7: Middlebury. Row 8-9: ETH3D. Best viewed in color and by zooming in.



Models Proposed Modules Scene Flow KITTI 2012 KITTI 2015 Middlebury-half ETH3D Params. (M) Time (s)CCE CFE DI SU EPE Bad 1.0 Bad 3.0 Bad 3.0 Bad 2.0 Bad 1.0

Baseline 0.56 6.66 4.65 5.57 10.67 3.45 11.11 0.222†
+CCE ✓ 0.49 6.08 4.40 5.84 8.42 2.82 12.10 0.242
+CFE ✓ 0.50 6.17 4.13 5.53 10.45 2.83 13.89 0.243
+CCE+CFE ✓ ✓ 0.49 5.95 4.02 5.75 8.31 2.53 14.11 0.246
+DI ✓ 0.57 6.74 4.57 5.63 12.40 2.77 11.11 0.242
+DI+SU ✓ ✓ 0.50 6.03 4.15 5.12 8.15 2.67 15.51 0.244
Full Model (ViT-S) ✓ ✓ ✓ ✓ 0.46 5.57 4.29 5.29 6.76 2.61 18.51 0.255
Full Model (ViT-L) ✓ ✓ ✓ ✓ 0.42 5.10 3.76 4.99 5.91 2.35 47.30 0.316

Table 2. Ablation study of proposed networks on the Scene Flow test set and zero-shot generation. The baseline is RAFT-Stereo with
two levels of correlation pyramids. The parameters counted here are the trainable ones. The time is the inference time for 960×540 inputs.
†We found that pre-defining the neighbor sampling indexes within the search radius can significantly accelerate the inference instead of
repeatedly defining them in every lookup as RAFT-Stereo’s implementation. We also apply this trick to the baseline, otherwise, its inference
time would be 0.329s.

B. Ablation Study
B.1. Main Ablation

In this section, we verify the effectiveness of the proposed
components via a main ablation study. The supplementary
material will present a detailed ablation study of the com-
bined encoders’ design choices and the proposed scale up-
date module’s number of steps. In the main ablation study,
we mainly use the ViT-S as the ViT backbone for our model
and train all the variants on Scene Flow for 200k steps. For
accuracy comparison, both the in-domain test and zero-shot
generalization evaluation are presented. We also list train-
able parameters and the inference time of the model variants
for comparing computational complexities. The results are
shown in Tab. 2.

Effecitveness of combined encoders. Compared with
the baseline, the combined context encoder (CCE) and the
combined feature encoder (CFE) achieves about 10% im-
provement on Scene Flow, while CCE performs slightly
better than CFE. Their combination does not give much ad-
ditional gain. Clear improvement appears on KITTI 2012,
Middlebury, and ETH3D, but KITTI 2015.

Effecitveness of depth initialization. Initializing the dis-
parity map with the modulated depth from DEFOM instead
of zeros does not improve the model’s performance on in-
domain fitting. Nevertheless, DI achieves better generaliza-
tion results on KITTI 2012, Middlebury, and ETH3D.

Effecitveness of scale update. When incorporating the
scale update with depth initialization (+DI+SU), there is
around 10% improvement on Scene Flow. Besides, apparent
progress is also obtained in the generationalization evalua-
tion of the four realistic datasets. Noteworthy, the Bad 2.0 of
Middlebury is reduced by over 50%.

Effecitveness of all components. By integrating all the
proposed modules into our complete model, we observe
further improvements on the Scene Flow and Middlebury
datasets. However, some slight performance drops are ob-
served when compared to individual components on other
datasets. For instance, on KITTI 2015, the full model (ViT-

S) slightly underperforms the combination of depth ini-
tialization and scale update. Nevertheless, the full model
demonstrates better overall performance. Additionally, using
a larger ViT backbone, ViT-L, further enhances performance.

Trainbale Parameters. As we fixed the DEFOM, the
new trainable parameters mainly come from the new DPT
for CCE and CFE, and the ConvGRU for SU. using CCE
and CFE meanwhile increases 2M parameters (+18%), using
SU increases 5.4M parameters (+49%), and the full model
(ViT-S) increases 7.4M parameters (+67%). The full model
(ViT-L) has quadrupled the parameters, as the channels of the
new DPT for CCE and CFE are defined to be proportional
to those of the ViT backbone, following the fixed DPT of
DEFOM for predicting depth.

Inference times. The increase in inference time is not as
significant as the growth in model parameters, as the majority
of the inference time is spent on recurrent update iterations.
The total number of iterations in our model is set to match
that of RAFT-Stereo. The proposed components contribute
to a modest 10% increase in inference time individually,
primarily due to the operation of DEFOM. The full model
(ViT-S) results in a 15% increase in inference time, while
the larger full model (ViT-L) sees a 42% increase.

B.2. Combined Encoders

In this section, we present an ablation study about combined
encoders’s design choices. Tab. 3 shows the results. For
both the combined feature encoder and context encoder,
we simultaneously experiment with other design choices for
them, including using the DPT only to construct the encoders
without CNNs and using the original fixed DPT instead of a
new trainable DPT.

Can we simply abandon CNNs? The answer is No. We
first ablate the CNNs in the encoders and use the feature
maps from the new DPT head only as the matching feature
maps and context maps. The results are listed in the first row
of Tab. 3. The ablation would result in a significant perfor-
mance drop on both in-domain test and zero-shot generation.
For example, The EPE increases by over 35% on Scene Flow,



Left Image RAFT-Stereo [6] Mocha-Stereo [2] Selective-IGEV [13] DEFOM-Stereo (VIT-S) DEFOM-Stereo (VIT-L)
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Figure 2. Zero-Shot qualitative comparison with RAFT-Stereo [6] Mocha-Stereo [2] and Selective-IGEV [13] on the four common realistic
stereo datasets. Row 1-2: KITTI 2012. Row 3-4: KITTI 2015. Row 5-6: Middlebury-full. Row 7-8: Middlebury-half. Row 9-10: ETH3D.
Best viewed in color and by zooming in.

Models Scene Flow KITTI 2015 Midd.-half ETH3D
EPE Bad 1.0 Bad 3.0 Bad 2.0 Bad 1.0

without CNNs 0.619 7.078 5.998 6.655 3.872
without new DPT 0.473 5.815 5.450 5.265 2.278
Full Model 0.458 5.571 5.289 4.287 2.614

Table 3. Ablation study on the design choices combined en-
coders. Midd.-half represents Middlebury (half resolution).

and Bad 2.0 increases by over 35% on Middlebury (half res-
olution). The results indicate that the CNN feature is still
necessary for the proposed model.

Is a new DPT beneficial? The answer is overall Yes.
The second row of Tab. 3 shows the result of the model that
used the fixed DPT of Depth Anything V2. There are about

3− 5% error increases on Scene Flow and KITTI 15 and a
23% rise on Middlebury (half resolution), while a 13% drop
on ETH3D. We thus hypothesize that the fixed DPT is more
favorable to data with a small disparity range (< 64), like
ETH3D and a new trainable DPT is more helpful to the large
disparity. As a new trainable DPT is generally better, we
include it in our final model.

B.3. Iterations of Scale Update

In this section, we investigate the effect of the number of
iterations of the scale update module in Tab. 4. Likewise,
we fixed the total number of iterations as 18 in training and
32 in evaluation, and the number of SU iterations is set
the same in training and evaluation. We perform training



on Scene Flow for 50k steps with a batch size of 4 and
evaluation on the Scene Flow test set. The number of scale
update iterations is increased from 0 to 10 and the 0 scale
update iteration represents that the scale update module is
not used. When the scale update iteration is 0, the model
has the highest error metrics, and increasing it to 1 results
in over 12% error reduction. The EPE continues to decrease
until the scale update iteration reaches 8 and the performance
for the 7-9 scale update iteration is closed. When the scale
update iteration exceeds 9, the performance starts to drop
obviously. Therefore, we select 8 as the number of scale
update iterations in our final model.

SU Iter 0 1 3 5 7 8 9 10

EPE 0.752 0.668 0.651 0.650 0.640 0.636 0.637 0.660
Bad 1.0 9.018 8.030 7.804 7.709 7.683 7.697 7.660 8.243

Table 4. Ablation study on scale update iterations.

C. Zero-Shot Qualitative Comparison

In this section, we provide more visual comparison
with RAFT-Stereo [6] , Mocha-Stereo [2] and Selective-
IGEV [13] Therefore, we provide a visual comparison
among RAFT-Stereo [6] with our DEFOM-Stereo (VIT-S),
and DEFOM-Stereo (VIT-L). Fig. 2 presents the comparison
on four common stereo datasets. We also provide the qual-
itative comparison on a more diverse stereo image dataset
Flickr1024 [14] in Fig. 3 and Fig. 4. All the models are pre-
trained on the Scene FLow dataset only. The clear advantages
of our models can be seen in the visual comparison.

D. Qualitative Comparison of RVC Models

This section presents a visual comparison among robust
vision challenge models. We compare our RVC model
with the previous best-performing model of individual
benchmarks, i.e., UCFNet RVC [12] on KITTI 2015,
CREStereo++ RVC [3] on Middlebury and LoS RVC [5] on
ETH3D. And our model demonstrates more accurate results
simultaneously.

E. Evaluation on Ill-Pose Regions

To further show the detailed improvement in occluded and
textureless areas, we evaluate the models on Middlebury, as
the indoor scene contains sufficient occluded and textureless
regions. We follow LoS to use SSIM to extract textureless
regions from the image. Tab. 5 shows the results, where the
proportions of different regions are also counted. There is ob-
vious improvement in these ill-posed areas. Fig. 6 visualizes
some examples for the evaluation.

Methods All(100%) Non-occluded (87.92%) Occluded(12.08%) Textureless(59.60%)

Our Baseline 13.44 10.64 30.33 13.01
Mocha-Stereo 11.49 9.11 25.79 12.25
Ours (ViT-S) 6.76 4.29 20.83 7.05
Ours (ViT-L) 5.91 3.26 20.64 6.04

Table 5. Zero-shot evaluation (Bad 2.0) on different areas of Midd.-half.

F. Transparent or Mirror Surfaces
We follow the reviewer’s suggestion to evaluate our model
on the dataset about transparent or mirror (ToM) surfaces.
We examine the models on the Booster datasett [16] which
features reflective and glass surfaces, and some examples
are shown in Fig. 7. We find that DAv2 performs usually
well for these reflective and transparent materials and our
model also works if these ill-posed factors are not too seri-
ous. When there is a large mirror, our model cannot work,
and DAv2(ViT-S) also slightly fails. For readers who require
a very robot model for ToM, we refer them to Stereo Any-
where [1], which is specifically designed for this problem.
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Figure 3. Zero-Shot qualitative comparison with RAFT-Stereo [6], Mocha-Stereo [2] and Selective-IGEV [13] on Flickr1024 [14]. Best
viewed in color and by zooming in.
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Figure 4. Zero-Shot qualitative comparison with RAFT-Stereo [6], Mocha-Stereo [2] and Selective-IGEV [13] on Flickr1024 [14]. Best
viewed in color and by zooming in.
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Figure 5. Qualitative Comparison among top-performing RVC models, including UCFNet RVC [12], CREStereo++ RVC [3], LoS RVC [5]
and our model. Row 1-3: KITTI 2015. Row 4-5: Middlebury. Row 5-6: ETH3D. Best viewed in color and by zooming in.
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Figure 6. Visual comparison on ill-posed areas. Odd Rows: Left Image and Disparity Maps. Even Rows: Region Masks and Error Maps.
Non-occluded and textured regions are in red. Non-occluded and textureless regions are in yellow. Occluded and textured regions are in blue.
Occluded and textureless regions are in cyan. Best viewed in color and by zooming in.

Left Image RAFT-Stereo DAv2 (ViT-S) Ours (ViT-S) DAv2 (ViT-L) Ours (ViT-L)

Figure 7. Examination of the depth models on the Booster dataset. Best viewed in color and by zooming in.
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