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A. Loss Functions
In this section, we will elaborate on the baseline loss func-
tions omitted in the paper, including identity loss Lid, cir-
cle loss Lcir. We also provide details of two versions of
our proposed memory rectification bank loss, which were
omitted in the manuscript: Lmrb(edu) and Lmrb(mixed).

Identity Loss. The identity loss transforms the retrieval
task of cross-modality ReID into an image classifier task,
regarding the person ID as the category of the correspond-
ing images. It is defined as follows:

Lid = − 1

Nm

Nm∑
i=1

logP (ymi |lmi ), (1)

where Nm denotes the number of pedestrian samples in
client m. lmi and ymi are the pedestrian logit and corre-
sponding label, respectively.

Circle Loss. The purpose of the used circle loss is to re-
duce intra-class distances and increase inter-class distances,
thereby effectively distinguishing different identities. It is
defined as follows:

Lcir = log[1 +

Nm
n∑

i=1

exp(γβ−
i (zm−

i + α))

·
Nm

p∑
j=1

exp(γβ+
j (−zm+

j + α− 1))],

(2)

where β−
i = [zm−

t + α]+ and β+
j = [1 + α − zm+

j ]+.
[·]+ is the cut-off at zero operation to ensure β−

i and β+
j are

non-negative. zm−
i and zm+

j are the negative and positive
samples of the pedestrian in client m. Nm

n and Nm
p denote

the number of negative and positive samples, respectively.
α and γ are hyperparameters to control the margin and loss
scaling, which are set to 0.45 and 64, respectively.
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Table I. Ablation studies of circle loss on SYSU-MM01 and
LLCM datasets. rank-1, mAP, and mINP are reported.

Settings
SYSU-MM01 [10] LLCM [14]

r=1 ↑ mAP ↑ mINP ↑ r=1 ↑ mAP ↑ mINP ↑
DPPT 51.27 49.29 34.47 34.69 41.91 38.48

Lcir → Ltri 45.73 41.86 26.19 32.67 39.31 35.98

Circle loss enables the model to focus more quickly
on those hard-to-distinguish sample pairs by applying
weighted treatment to all positive and negative samples,
thereby reducing dependence on sample selection. This
makes it more stable and efficient compared to triplet loss
which is popular in ReID works. We conduct ablation ex-
periments under the CI protocol on the SYSU-MM01 and
LLCM datasets, as shown in Tab. I.

More Details of MRB. In the manuscript, we have dis-
cussed the effect of different metrics in MRB, namely co-
sine similarity (Lmrb(cos)), Euclidean distance (Lmrb(edu)),
and a mixture of both (Lmrb(mixed)). The Lmrb(cos) is Eq.6
of the manuscript. The Lmrb(edu) is defined as follows:

Lmrb(edu) =
1

Nm

Nm∑
i=1

∥⟨zmi ⟩(t) − ⟨cgyi
⟩(t−1)∥2, (3)

where ⟨zmi ⟩(t) is the i-th l2-normalized feature embedding
in the t-th epoch on the m-th client. ⟨cgyi

⟩(t−1) is the global
center of identity yi in the last epoch t− 1. Similarity, The
Lmrb(mixed) is defined as follows:

Lmrb(mixed) = 0.5(Lmrb(cos) + Lmrb(edu)). (4)

Under the EI protocol, our DPPT employs the mixed
MRB. The ablation study for this choice is presented in
Tab. II, showing the impact of using the mixed metric on
model performance. This experiment highlights how com-
bining cosine similarity and Euclidean distance contributes
to improved generalization in the unseen entity.
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Table II. Ablation studies of the MRB under EI protocol.

Settings
R [6]+L [14]→S [10] L [14]+S [10]→R [6] R [6]+S [10]→L [14]

r=1 ↑ mAP ↑ r=1 ↑ mAP ↑ r=1 ↑ mAP ↑
edu 10.49 11.31 18.29 19.64 13.81 18.19
cos 10.72 11.40 21.01 20.93 14.30 18.79

mixed 11.27 11.86 21.51 20.72 14.63 19.15

Table III. The dataset information of three protocols in our L2RW
benchmark. ID is the pedestrian numbers in the training sets, and
the samples denote the number of training images. Query and
gallery are the infrared and visible images in the testing set.

(a) Camera Independence (CI)

Setting Client ID Samples Query Gallery

SYSU-MM01 [10]

1 194 4721

3801 301

2 195 5753
3 392 7909
4 382 5811
5 390 5973
6 200 4000

RegDB [6]
1 206 2060

2060 20602 206 2060

LLCM [14]

1 21 343

7166 484

2 20 137
3 345 5733
4 353 5843
5 661 8019
6 687 8450
7 72 1002
8 40 1089
9 24 305

(b) Entity Sharing (ES)

Setting Client ID Samples Query Gallery

R [6]+L [14]→S [10] - 919 35041 3801 301
L [14]+S [10]→R [6] - 1108 65088 2060 2060
R [6]+S [10]→L [14] - 601 34577 7166 484

(c) Entity Independence (EI)

Setting Client ID Samples Query Gallery

R [6]+L [14]→S
1 206 4120

3801 3012 713 30921

L [14]+S [10]→R
1 713 30921

2060 20602 395 34167

R [6]+S [10]→L [14]
1 206 4120

7166 4842 395 34167

B. Experiment Details

B.1. Datasets

We provide details on the training set, testing set, and
client information under our designed protocols in L2RW,
as shown in Tab.III. It is noted that the model adopts cen-
tralized training under the CS protocol, so there is no client
information.

B.2. Training Details

The training settings under the three protocols in L2RW are
shown in Tab. IV. In the CI protocol, the training set is fur-

Table IV. The training details of our proposed L2RW, CA is the
channel augmentation.

Setting CI EN/ES

Total epochs 50 30
Batch size 64 64
Image size 288x144 288x144

Augmentation
RandomCrop RandomCrop

RandomHorizontalFlip RandomHorizontalFlip
CA [11] CA [11]

Optimizer SGD SGD
LR 0.2 0.2

LR Scheduler OneCycle OneCycle
Weight decay 5e−4 5e−4

Momentum 0.9 0.9

Figure I. Learning rate setting under our three protocols.
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Figure II. Illustration of challenges of (a) VI-ReID and (b) privacy-
preserved VI-ReID in our L2RW benchmark.

ther divided by cameras. In the ES protocol, the training
sets of two datasets are directly concatenated. In the EI pro-
tocol, the training sets of two datasets are processed by two
independent clients without data sharing. The test sets for
all three protocols remain consistent with the official splits.
We used a OneCycle learning scheduler, where the learning
rate changes with each iteration, as shown in Fig. I.
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Figure III. Training details of four federated learning algorithms on the SYSU-MM01 dataset. The total loss of clients and the accuracy of
the server are shown.

B.3. Problem Illustration

As shown in Fig. II (a), VI-ReID is more challenging due to
the large discrepancy between visible and infrared modali-
ties. To be specific, visible images have three channels and
contain abundant color information, while infrared images
only have one channel of invisible electromagnetic radia-
tion. This leads to the lack of color information in infrared
images, making it challenging (even for humans) to distin-
guish identities between visible and infrared modalities. In
addition, VI-ReID encounters intra-modality variations in
posture, viewpoint, light, etc., making VI-ReID more chal-
lenging compared to traditional single-modality ReID task.

We also show the challenges encountered with privacy-
preserved VI-ReID, i.e., modality incomplete, identity
missing, and domain shift, as shown in Fig. II (b). Specif-
ically, the modalities available on different clients may
vary, with some having only RGB, others only IR, or both,
namely modality incomplete. Some pedestrians are not cap-
tured by specific cameras, resulting in the absence of their
images on the corresponding clients. This is referred to as
identity missing. Moreover, the intra-modality variations or
cross-modality gap across clients inevitably bring domain

shift.

B.4. Reproduced Method

CI. In the CI protocol, we reproduced the two VI-ReID
methods, i.e., AGW [12] and DNS [1]. Note that these
two methods cannot directly be applied to the CI protocol
as their frameworks are designed for data-shared learning.
So we modify their two-stream architecture into one-stream
architecture and adopt our sampling strategy. Moreover,
the module or loss that needs modality information is re-
moved. Specifically, the AGW† is trained by the ResNet-
50 with Non-local modules, supervised by identity loss and
weighted regularization triplet loss. The DNS† is trained
by the ResNet-50 with heterogeneous space shifting (HSS)
modules, supervised by the identity loss and circle loss.

ES. In the ES protocol, existing VI-ReID methods can
be seamlessly applied. Therefore, apart from the training
epoch, all other settings in our reported methods [1, 7, 11,
12, 14] in EI remain consistent with the official configura-
tions.

Federated Learning Algorithm. In the CI, we repro-
duce four federated learning algorithms, including FedAvg
[5], FedProx [4], Moon [3], and Fednova [9]. Different fed-
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Figure IV. t-SNE visualization of four federated algorithms during training on the SYSU-MM01 dataset under the CI protocol.

erated learning algorithms only change step three 3⃝ and
step four 4⃝. We present the information of clients and
the server for different federated learning algorithms on the
SYSU dataset under the CI protocol, as shown in Fig. III.

To further investigate their roles in VI-ReID, we adopt
t-SNE visualizations of the training processes for four algo-
rithms, as shown in Fig. IV. During the training process,
modality differences gradually decrease across all meth-
ods. Although FedProx [4] significantly reduces modal-
ity differences by the end, it struggles to effectively dis-
tinguish between different identities, making it challenging
for the model to differentiate between pedestrians. Fednova
[9] does not effectively reduce modality differences but
achieves slightly better identity differentiation compared to
FedProx. Moon [3] performs well in distinguishing pedes-
trians within the same modality but faces challenges in han-
dling modality differences and inter-class issues. Finally,
FedAvg [5] outperforms the other three algorithms but still
exhibits noticeable modality differences and struggles with
distinguishing certain identities. These observations high-

Table V. Efficiency comparison of reported methods.

Method Throughput (bps) ↑ Lantency (ms) ↓ Method Throughput (bps) ↑ Lantency (ms) ↓
DEEN [14] 425.58 112.79 AGW [12] 1174.08 40.88

LBA [7] 634.99 50.40 CAJ [11] 1184.36 54.04
DNS [1] 909.51 52.78 Ours 2528.57 18.98

light the limitations of current federated learning algorithms
in cross-modality scenarios, making this an important topic
for future research.

B.5. Effiency Analysis

To show the effiency of decentralized training, we have
evaluated the throughput and latency of all methods un-
der ES and EI protocols on a RTX 3090 GPU, as shown
in Tab. V. It is evident that our proposed DPPT achieves the
highest throughput and the lowest latency, demonstrating its
effectiveness.
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Figure V. Visualization of gradient inversion.

C. Discussion
C.1. Decentralized Training

Some existing methods [8, 15, 16] leverage decentralized
training to address single-modality ReID tasks in a privacy-
preserved way. We will discuss the distinctions between
our L2RW and theirs from two perspectives: technical chal-
lenges and social benefits. Technical Challenges: Un-
like traditional single-modality ReID, VI-ReID faces sig-
nificant cross-modality discrepancies, exacerbating the do-
main shift problem between clients. As shown in the visu-
alization in Fig. IV, while visible modality features (circle)
exhibit minimal intra-class distances, the cross-modality
distances remain substantial. This fundamental difference
and additional difficulty underscore the unique challenges
of VI-ReID compared to existing single-modality ReID ap-
proaches. Social Benefits: VI-ReID ensures all-day re-
trieval capability, whereas traditional single-modality ReID
operates only under favorable lighting conditions. From the
perspective of contributing to intelligent surveillance sys-
tems, VI-ReID offers greater societal value and is more de-
serving of research focus.

Table VI. Evaluation on various attacks.
Attack r=1 ↑ r=10 ↑ mAP ↑ mINP ↑

image(100%) 46.36↓4.91 87.32↓1.23 46.53↓2.76 33.21↓1.26

gradient(33%) 42.82↓8.45 84.99↓3.56 42.57↓6.72 29.10↓5.37

gradient(66%) 32.20↓19.07 75.00↓13.55 32.74↓16.55 20.95↓13.52

gradient(83%) 24.00↓27.27 65.35↓23.20 25.32↓23.97 15.12↓19.35

gradient(100%) 4.90↓46.37 22.76↓65.79 6.10↓43.19 3.16↓31.31

C.2. Privacy Security

To discuss the privacy protection of our proposed DPPT,
we evaluated it under the CI protocol on the SYSU-MM01
dataset with various attacks, as shown in Tab. VI. Un-
der image attacks (adding Gaussian noise), our method
maintained good performance. For gradient attacks, we
multiplied client gradients by a random factor in [0.5, 2].
Even with 83% gradient attack, our method achieved 24%
Rank-1. Performance only degraded significantly when
all client gradients were attacked, highlighting its robust-
ness and privacy-preserving properties. To further validate
the privacy of our method, we assumed gradient leakage
and reconstructed pedestrian images by using gradient in-
version, as shown in Fig. V. The reconstructed results re-
vealed no identifiable pedestrian information to the naked
eye, demonstrating that our method effectively preserves

privacy.

C.3. Potential Privacy-Preserved Way

It is worth noting that decentralized training is not the
only approach to ensuring privacy protection. Anonymiz-
ing surveillance images is another viable solution [13].
However, this approach still requires transmitting the
anonymized images to a central server for training, which
imposes significant demands on both time and storage re-
sources. In contrast, decentralized training offers a more
efficient way to address these challenges.

C.4. Generalization in Unseen Domain

To evaluate the generalization of current VI-ReID methods
on unseen domains, we randomly sample 10 identities from
three datasets under the L+S→R setting and visualize fea-
ture distributions using t-SNE, shown in Fig. VI. It shows
that while these methods alleviate the cross-modality gap in
the seen domain, whether the source domain is shared (ES)
or independent (EI), they fail to do so for unseen domains.
This highlights a heavy reliance on visible knowledge and
a lack of adaptability to unseen domains, severely limiting
the real-world deployment of VI-ReID. Therefore, we argue
that enhancing the generalization ability of VI-ReID meth-
ods to adapt to unseen environments is a pressing issue that
requires immediate attention.

D. Limitations and Future Works
D.1. Limitations

This work revisits VI-ReID and introduces a decentralized
training approach for privacy-preserved VI-ReID. How-
ever, under the CI protocol, our method still exhibits a
performance gap compared to methods with fully shared
data [1, 2, 14]. Furthermore, the overall rank-1 accuracy
remains relatively low under both the ES and EI protocols,
indicating that current methods, whether centralized or de-
centralized, struggle to handle unseen domains effectively.

D.2. Future Works

In future work, we will explore methods to enhance the
model’s ability to address cross-modal discrepancies under
the CI protocol and improve the generalization of VI-ReID
to unseen domains. Additionally, we plan to investigate
more complex scenarios, such as designing client-specific
models based on data volume to minimize resource waste.
Furthermore, we aim to explore the feasibility of achieving
privacy-preserved VI-ReID without label information.
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