
Geometry Field Splatting with Gaussian Surfels

Supplementary Material

A. Derivations

A.1. Revisit Volume Splatting

A.1.1 Original Derivation

Given a density field σ(x) and a color field c(x), where

x ∈ R
3, the volume splatting algorithm [28] proposes to

decompose the density field into the weighted sum of a set

of n independent kernels {K1,K2, ...,Kn}, each of which is

a function mapping from x to a scalar and associated with a

weight ωi ∈ R+, i = 1, 2, ..., n.

Formally, the density field is expressed as:

 \label {equation-decomposition} \sigma (\mathbf {x}) = \sum _{i=1}^n \omega _i \mathcal {K}_i(\mathbf {x}).

 (1)

This decomposition helps simplify the volume rendering

equation, which does not consider the scattering, for efficient

rendering.

Specifically, given a ray shooting from the camera origin

o with direction d, the location of a point p on the ray can

be expressed as p(l) = o + dl, where l ∈ R+ denotes the

depth. The rendered color C with the exponential falloff is

given by the following equation:

 \label {equation-volume-rendering-color} \mathbf {C} = \int _{0}^{\infty } \mathbf {c}(\mathbf {p}(l)) \sigma (\mathbf {p}(l)) \exp (-\int _{0}^{l}\sigma (\mathbf {p}(l'))dl') dl.

 (2)

To simplify the notation without losing generality, we rewrite

the Eqn. 2 as:

 \label {equation-volume-rendering-color-sim} \mathbf {C} = \int _{0}^{\infty } \mathbf {c}(l) \sigma (l) \exp (-\int _{0}^{l}\sigma (l')dl') dl.

 (3)

Zwicker et al. [28] propose to choose each of the kernels

which compose the density field to have finite intersection

intervals on the ray and assume that there is no overlapping

between intersection intervals of any two of them. These

kernels can then be sorted based on their intersection interval

along the ray. By plugging the Eqn. 1 into the Eqn. 3, we get:

 \label {equation-volume-rendering-decom} \begin {aligned} \mathbf {C} =& \int _{0}^{\infty } \sum _{i=1}^{n} \mathbf {c}(l) \omega _{i}\mathcal {K}_i(l) \exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl') \\ & \prod _{j=1}^{i-1} \exp (-\int _{0}^{l}\omega _{j}\mathcal {K}_j(l')dl') dl. \end {aligned}

(4)

Relying on the assumption that each kernel has finite

intersection interval and there is no overlapping, we can

further rewrite the Eqn. 4 as:

 \label {equation-volume-rendering-decom-sim} \begin {aligned} \mathbf {C} =& \sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\int _{0}^{\infty }\omega _{j}\mathcal {K}_j(l')dl')) \\ & (\int _{0}^{\infty } \mathbf {c}(l) \omega _{i}\mathcal {K}_i(l) \exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl') dl). \end {aligned}

(5)

Zwicker et al. [28] then assume the color is constant

within the intersection interval of each individual kernel and

ignores the self-occlusion. Eqn. 5 can then be written as:

 \mathbf {C} \approx \sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\int _{0}^{\infty }\omega _{j}\mathcal {K}_j(l')dl')) (\mathbf {c}_i \int _{0}^{\infty } \omega _{i}\mathcal {K}_i(l) dl),

(6)

where ci denotes the constant color value within the inter-

section interval of ith kernel.

Zwicker et al. [28] then propose to expand the expo-

nential term using the Taylor series and defines a value

ρi = ωi

∫∞
0

Ki(l)dl, which is called the footprint function

with respect to the current ray. We can then reach:

 \label {equation-approx-final} \begin {aligned} \mathbf {C} &\approx \sum _{i=1}^{n} (\prod _{j=1}^{i-1} (1 - \rho _{j})) (\mathbf {c}_i \rho _{i}) \\ &= \sum _{i=1}^{n} \mathbf {c}_i \rho _{i} (\prod _{j=1}^{i-1} (1 - \rho _{j})), \end {aligned}

(7)

which corresponds to the Eqn. 2 in the main paper. Notice

that, even though the kernels are used to decompose the

density field, due to the Taylor series expansion, ρi, i =
1, 2, ..., n has to be within the range [0, 1]. Also, notice that,

in a more general sense, the footprint function is the integra-

tion of the density along the intersection interval, but it is

assumed that there is only one kernel constituting the density

there, therefore, the footprint function is simplified as the

integration of the kernel values.

Therefore, as long as we can evaluate the footprint func-

tion ρ easily and even differentiably, we can then reach an

algorithm for efficient volume rendering, and even inverse

rendering [9] under certain approximations.

As a summary, we identify following factors that make

the volume splatting an approximate rendering algorithm:

• Self-occlusion is ignored.

• Transmittance term is approximated through the Taylor

expansion.

• It is assumed that there is no overlapping between the

intersection intervals of any two kernels, but in practice,

it is not the case, which leads to the sorting not clearly

defined, as observed in [15].

A common choice of kernel is to use 3D Gaussian kernel

as in [9, 28]. In [9], the footprint function of 3D Gaussian ker-

nel is further approximated due to the perspective transform,

which introduces additional bias.

A recent emerging interest [4, 6] is to use 2D Gaussian

kernel, which is then known as Gaussian surfel [14]. In this

case, perspective projection is no longer a problem because

the intersection between the 2D Gaussian kernel and the ray

can be efficiently calculated [6]. And the sorting is always

well-defined because the intersection interval along the ray

is in general a point instead of an interval in the case of 3D

Gaussian. However, the footprint function is then undefined

because the integrand is a discontinuous function which has

a finite value at the place where ray intersects with the 2D

Gaussian kernel, and zero otherwise. The workaround pro-

posed in [6] is to simply use the finite value as the footprint

function, which still introduces further bias.

A rigorous exact rendering algorithm with efficient splat-

ting is still an open problem, and we manage to solve it.

A.1.2 Derivation of Refined Splatting Algorithm

To move towards the exact rendering, we first address two

approximations in the aforementioned derivation. We do not

ignore the self-occlusion and do not expand the transmittance

term. This corresponds to the Eqn. 7 in the main paper.

Specifically, from the Eqn. 5, we have:

 \label {equation-refined-color} \begin {aligned} \mathbf {C} =& \sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\rho _{j})) (\mathbf {c}_i \int _{0}^{\infty } \omega _{i}\mathcal {K}_i(l) \\ &\exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl') dl). \end {aligned}

(8)

Notice that:

 \frac {d}{dl}\exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl') = -\omega _{i}\mathcal {K}_i(l)\exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl')

(9)

Therefore, from Eqn. 8 we have:

 \label {refined-volume-rendering} \begin {aligned} \mathbf {C} &= \sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\rho _{j})) (\mathbf {c}_i (-\exp (-\int _{0}^{l}\omega _{i}\mathcal {K}_i(l')dl'))|^{\infty }_{0}) \\ &=\sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\rho _{j})) (\mathbf {c}_i (1-\exp (-\int _{0}^{\infty }\omega _{i}\mathcal {K}_i(l')dl'))) \\ &=\sum _{i=1}^{n} (\prod _{j=1}^{i-1} \exp (-\rho _{j})) (\mathbf {c}_i (1-\exp (-\rho _{i}))) \\ &=\sum _{i=1}^{n} \mathbf {c}_i (1-\exp (-\rho _{i})) \prod _{j=1}^{i-1} \exp (-\rho _{j}), \end {aligned}

(10)

which corresponds to the Eqn. 7 in the main paper. There-

fore, there is no restriction on the value range of ρi, i =
1, 2, ..., n.

A.2. Parameterize and Render Geometry Field with
Gaussian Surfels.

We focus on deriving the Eqn. 15 in the paper here. Recall

that our goal is to evaluate the following equation:

 \label {eqn-eqn-15} \rho _i = \int _{t_i - h/\cos \theta _i}^{t_i + h/\cos \theta _i} \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))} ||\nabla F(\mathbf {x}(t))||\cdot |\boldsymbol {\omega }\cdot \mathbf {n}(\mathbf {x}(t))| dt,

(11)

where Ψ(·) is the CDF of the standard normal distribution

and ψ(·) = Ψ′(·). Besides, when |t− ti| < h/ cos θi,

 \begin {aligned} F(\mathbf {x}(t)) &= f_i \times \left (1-\frac {|t-t_i|}{h/\cos \theta _i}\right) -c, \\ ||\nabla F(\mathbf {x}(t)) || &= f_i / h, \\ \cos \theta _i &= |\boldsymbol {\omega }\cdot \mathbf {n}_i|. \\ \end {aligned}

(12)

Recall that ∇F (x(t)) is parallel to ni and we have

n(x(t)) = ∇F (x(t))/||∇F (x(t))||, which implies that

cos θi = |ω · n(x(t))|.
Notice that Eqn. (11) is a symmetric integration with

respect to ti, therefore,

 \label {eqn-eqn-15-sim-1} \begin {aligned} \rho _i &= 2\int _{t_i}^{t_i + h/\cos \theta _i} \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))} ||\nabla F(\mathbf {x}(t))||\cdot |\boldsymbol {\omega }\cdot \mathbf {n}(\mathbf {x}(t))| dt \\ &= 2\int _{t_i}^{t_i + h/\cos \theta _i} \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))} \cdot (f_i/h)\cdot (\cos \theta _i) dt. \end {aligned}

(13)

Notice that, when t ∈ [ti, ti + h/ cos θi]:

 \begin {aligned} \frac {d}{dt}\ln \Psi (-F(\mathbf {x}(t))) &= \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))}\cdot (-F(\mathbf {x}(t)))' \\ &= \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))}\cdot (c-f_i(1 - \frac {t-t_i}{h/\cos \theta _i}))' \\ &= \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))}\cdot \frac {f_i}{h/\cos \theta _i} \\ &= \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))}\cdot \frac {f_i}{h}\cdot \cos \theta _i. \end {aligned}

(14)

Therefore, Eqn. (13) is then:

 \begin {aligned} \rho _i &= 2\int _{t_i}^{t_i + h/\cos \theta _i} \frac {\psi (-F(\mathbf {x}(t)))}{\Psi (-F(\mathbf {x}(t)))} \cdot (f_i/h)\cdot (\cos \theta _i) dt \\ &= 2 \ln \Psi (-F(\mathbf {x}(t)))|^{t_i + h/\cos \theta _i}_{t_i} \\ &= 2 (\ln \Psi (-(-c)) - \ln \Psi (-(f_i - c))) \\ &= 2 (\ln \Psi (c) - \ln \Psi (c - f_i)) \\ &= -2\ln \Psi (c - f_i), \end {aligned}

(15)

where c is a large positive number such that Ψ(c) = 1, and

therefore lnΨ(c) = 0.

Notice that we enable the calculation of footprint function

by using the extrusion with width 2h, and it can be seen as

equivalent to the original case without the extrusion, by

letting h→ 0.

Discussion about Overlapping. It is less obvious that the

intersections between Gaussian surfels and the ray could

overlap, i.e., the intersection points coincide, but we argue

that it is indeed the case in practice.

First of all, we explicitly utilize the depth distortion loss

to promote the ray to intersect the visible surface exactly

once. Additionally, assume we have a flattened surface in the

space. It then requires certain number of Gaussian surfels

to compose it. Since we explicitly enforce the depth-normal

consistency to smooth the geometry, these Gaussian surfels

could become coplanar and partially overlap with each other

within the accuracy of floating point numbers. Notice that the

partial overlapping here refers to the overlapping of Gaussian

surfels in the 3D space instead of the overlapping of inter-

sections with respect to the ray which we mainly talk about.

Therefore, when a ray falls into the area where Gaussian

surfels overlap, the intersections between Gaussian surfels

and the ray then coincide.

B. Additional Implementation Details

As to the depth distortion loss, the regularization weight is

set to 1000 for the DTU dataset, 10 for the BlendedMVS

dataset, and 0 for the Mip-NeRF 360 dataset.

B.1. Geometry Field Splatting

We base our rasterizer implementation on that of 2DGS [6]

using CUDA. Given a ray, the footprint function for the ith

Gaussian surfel is defined as:

 \begin {aligned} \rho _i &= -2\ln \Psi (c - f_i) \\ &= -2\ln (0.5+0.5\text {erf}(\frac {c - f_i}{\sqrt {2}})). \end {aligned}

(16)

We choose c = 3, because Ψ(3) ≈ 0.999. Therefore,

 \begin {aligned} \rho _i = -2\ln (0.5+0.5\text {erf}(\frac {3 - f_i}{\sqrt {2}})), \end {aligned}

 (17)

We further clamp the maximum of fi to be 4.28 such that

the converted opacity 1− exp(−ρi) ≈ 0.99, because as in

the original 3DGS [9] and 2DGS [6] implementations, the

maximum of opacity is clamped to be 0.99. Namely,

 \label {eqn-rho} \begin {aligned} \rho _i = -2\ln (0.5+0.5\text {erf}(\frac {3 - \min \{f_i, 4.28\}}{\sqrt {2}})). \end {aligned}

 (18)

However, we find that when fi is small, the derivative of ρi
is close to zero and propagates almost zero gradients back to

Figure 1. Plotting of function values of F (x) = −2 ln(0.5 +
0.5erf(3−x

√

2
)) and G(x) = 0.03279x3.4 over the range [0, 4.28].

the parameter due to the numerical error, which hinders the

optimization.

To alleviate the numerical error, we approximate Eqn. (18)

with a polynomial function:

 \rho _i \approx 0.03279 (\min \{f_i, 4.28\})^{3.4}, (19)

We plot functions F (x) = −2 ln(0.5+0.5erf(3−x√
2
)) and

G(x) = 0.03279x3.4 in Fig. 1, and it can be seen that these

two functions are close.

B.2. Remedy Loss Landscape Defects

The color propagation per ray is approximated by propagat-

ing color in the R
3 space. However, propagating the colors

of all Gaussian surfels into the color of every Gaussian surfel

is impractical.

Therefore, we use k-closest-point [16] algorithm based

on the centers of Gaussian surfels to identify 10 closest

Gaussian surfels to each Gaussian surfel every 100 iterations.

The color of every Gaussian surfel is then blended based on

these 10 closest Gaussian surfels which include itself. The

choice of number of closest Gaussian surfels is made by

ensuring the program does not cause out of memory error

with either of our two color representations on a standard

consumer-level graphics card with around 10 GB memory,

on the DTU dataset [7].

B.3. Improve Color Representation

Following the default setting of [19], the shallow MLP is im-

plemented with 2 hidden layers, and the spherical harmonics

encoding of directions has degree 4.

C. Additional Evaluation Results

Evaluation Details. We find that the evaluation of mesh

quality is also dependent on how well the mesh is cleaned

Methods 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Avg. ↓

Ours (SH) 0.38 0.63 0.30 0.35 0.79 0.63 0.65 1.10 1.21 0.62 0.48 1.18 0.33 0.42 0.38 0.63

- Geometry Field Splatting 0.50 0.67 0.35 0.43 0.94 0.89 0.70 1.17 1.18 0.65 0.57 1.02 0.39 0.61 0.48 0.70

- Remedy Loss Landscape Defects 0.42 0.67 0.35 0.36 0.85 0.69 0.70 1.19 1.19 0.65 0.49 1.24 0.36 0.46 0.40 0.67

+ Per-Ray Sorting 0.39 0.65 0.31 0.33 0.78 0.49 0.61 1.14 1.20 0.64 0.46 1.07 0.29 0.44 0.37 0.61

Ours (Latent) 0.40 0.59 0.39 0.38 0.72 0.59 0.65 1.08 0.93 0.59 0.50 0.67 0.34 0.47 0.40 0.58

- Geometry Field Splatting 0.52 0.79 0.47 0.52 0.91 0.71 0.84 1.17 1.07 0.63 0.65 0.82 0.42 0.75 0.53 0.72

- Remedy Loss Landscape Defects 0.38 0.56 0.39 0.36 0.80 0.60 0.68 1.13 0.95 0.64 0.50 0.65 0.35 0.48 0.40 0.59

+ Per-Ray Sorting 0.43 0.64 0.38 0.34 0.73 0.50 0.57 1.13 1.00 0.65 0.49 0.59 0.30 0.48 0.38 0.57

- Ray Direction Conditioning 0.47 0.61 0.42 0.39 0.81 0.78 0.75 1.13 0.98 0.60 0.56 0.67 0.39 0.55 0.44 0.64

- Reflected Ray Direction Conditioning 0.39 0.61 0.40 0.37 0.78 0.60 0.62 1.09 0.98 0.61 0.50 0.80 0.35 0.47 0.39 0.60

Table 1. Quantitative evalution on the DTU dataset based on the Chamfer Distance for different ablation models. The best metric is

highlighted in red, the second best metric is highlighted in orange, and the third best metric is highlighted in yellow.

Figure 2. Comparisons of normal maps and chamfer distances (de-

noted as “CD”; lower is better) of reconstructed geometry for highly

specular surfaces (first column) from the ShinyBlender dataset [20].

after extraction. Typically, SDF-based approaches use the

marching cube algorithm to produce closed-surface meshes

which differ from the open-surface ground-truth and then

contain redundant parts. In contrast, splatting-based ap-

proaches typically use the TSDF fusion algorithm to produce

open-surface meshes based on the depth maps, which are

more concise. It then becomes necessary to clean triangles,

which are invisible from all training views, to have a fair uni-

fied evaluation protocol. In practice, we combine the scripts

from [11] and [6] to clean the mesh before evaluation. As to

the Neuralangelo, we find that its extracted mesh sometimes

is enclosed in a sphere, which makes the mesh cleaning

fail. Therefore, we manually remove the enclosing spheres

if they exist for the extracted meshes of Neuralangelo before

passing them into the evaluation.

C.1. Quantitative Evaluation

We evaluate the view synthesis quality of our method on

the Mip-NeRF 360 dataset [1], while comparing with NeRF

[12], INGP [13], MERF [17], BakedSDF [22], MipNeRF

360 [1], BOG [18], 3DGS [9], SuGaR [5], MipSplatting

[24], 2DGS [6], GOF [25], and RaDe-GS [27]. We find

that with geometry clearly defined and its corresponding

regularization, the view synthesis is harmed.

As to the rendering speed during inference, since our

proposed color propagation is irrelevant to the view, it can be

achieved and cached before rendering, thus does not impact

Outdoor Scenes Indoor Scenes

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 21.46 0.458 0.515 26.84 0.790 0.370

INGP 22.90 0.566 0.371 29.15 0.880 0.216

MERF 23.19 0.616 0.343 27.80 0.855 0.271

BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258

MipNeRF 360 24.47 0.691 0.283 31.72 0.917 0.180

BOG 23.94 0.680 0.263 27.71 0.873 0.227

3DGS 24.64 0.731 0.234 30.41 0.920 0.189

SuGaR 22.93 0.629 0.356 29.43 0.906 0.225

MipSplatting 24.65 0.729 0.245 30.90 0.921 0.194

2DGS 24.18 0.703 0.287 30.06 0.909 0.213

GOF 24.82 0.750 0.202 30.79 0.924 0.184

RaDe-GS 25.17 0.764 0.199 30.74 0.928 0.165

Ours (SH) 24.40 0.734 0.224 29.93 0.916 0.194

Ours (Latent) 23.76 0.693 0.293 29.92 0.906 0.219

Table 2. Quantitative comparison on the Mip-NeRF 360 dataset

based on the view synthesis.

the rendering speed.

C.2. Qualitative Evaluation

We show complete rendering of all cases on the DTU dataset

[7] and BlendedMVS dataset [21] between our method and

2DGS [6] in Fig. 3, Fig. 4, and Fig. 5. In the 2DGS algo-

rithm, using the median depth in the regularization leads to

better quantitative results, while using the mean depth in

the regularization produces smoother geometry and more

visually pleasing results. In Fig. 3, we compare with 2DGS

trained with both settings. We capture more geometric de-

tails than those trained with mean depth in 2DGS, and are

free of cracks and holes compared to those trained with

median depth in 2DGS. We also show the extracted mesh

on a few scenes of MipNeRF 360 dataset in Fig. 7 using

our method and TSDF fusion. We further provide prelimi-

nary comparison results for two selected cases on the Shiny-

Blender dataset [20] in Fig. 2 to demonstrate the capability

of our method to generalize to highly specular surfaces.

We also test our method on the Tanks&Temples dataset

[10] but this dataset does not provide ground-truth camera pa-

rameters, which requires an iterative-closest-point procedure

to align the extracted mesh and ground-truth mesh. After

manual inspection, we find that the metrics heavily depend

on how well this off-the-shelf alignment algorithm aligns

the extracted mesh and ground-truth mesh, and it actually

fails on two scenes. Therefore, we choose to only show our

qualitative results in Fig. 6.

C.3. Ablation Study

We provide the complete evaluation results on the DTU

dataset for all our ablation models in Tab. 1. Specifically,

we evaluate with our two color representations, i.e., SH

representation and latent representation. As to the latent

representation, we also ablate on the choice of conditioning

for MLP. We conduct all the ablation experiments with the

same hyper-parameters with the baseline.

By comparing the baseline with the ablation model with-

out geometry field splatting, it is clear that the geometry

field splatting instead of the original approximate rendering

formulation in 2DGS significantly boosts the performance.

However, we also find that the geometry field splatting makes

the SH representation more sensitive to the specular surfaces,

which is reflected in the “scan110”. By comparing the base-

line with the ablation model without the remedy to loss land-

scape defects, we can see that our proposed color blending

consistently improves the performance on almost every case,

especially for the SH representation. The ablation model

which implements per-ray sorting achieves better averaged

performance, but does not always achieve the best perfor-

mance on every case. We argue that it may be due to the fact

that the hyper-parameters are tailored for the global sorting

approximation, and not tuned for the per-ray sorting case.

Implementing [15] with our algorithm while tuning relevant

hyper-parameters may further improve our performance.

As to the latent representation, without ray direction con-

ditioning or reflected ray direction conditioning, the recon-

structed geometry suffers.

D. Additional Discussions

In this paper, we focus on evaluating our proposed geometry

field representation and remedy to loss landscape defects,

and therefore do not incorporate many other methods which

could further improve the geometry reconstruction. However,

we identify a few potential ways here which may further

improve the geometry reconstruction with our method.

Anti-aliasing. As discussed in [6], a 2D Gaussian is degen-

erated into a line in the screen space while being observed

from a slanted viewpoint. Besides, as discussed in [28], the

output image has to be band-limited to avoid aliasing. We

follow [6] to only apply an object-space low-pass filter [2],

which actually does not follow our rendering model. Similar

to [24], it would be useful to design an anti-aliasing method

which is tailored for our rendering model.

Appearance Embedding. We assume that the scene is

static and the images are captured in the same lighting con-

dition. However, there could be slight variance of lighting

conditions, and brightness of the images, etc., due to the

capture. Therefore, it would be useful to have an appearance

embedding per image as in [3, 25, 27].

Color Representation. We choose to use a latent represen-

tation for color that is as simple as possible to improve on

the specular cases and emphasize more on our proposed geo-

metric representation. In the future, it will be beneficial to

further extend our method with better latent representations

as in [8] to work on highly specular surfaces.

Multi-view Stereo Constraint. Concurrently, Chen et al.

[3] shows that the multi-view stereo constraint could be

helpful for the geometry reconstruction quality using the

volume splatting representation. It would be useful to apply

the multi-view constraint with our clearly defined geometry,

which may further improve the reconstruction.

Incorporate Monocular Priors. In the dense-views ge-

ometry reconstruction task, the captured images are assumed

to be sufficient to recover the geometry. However, there may

not be clear standard to decide whether the captured images

are sufficient to define a unique solution, and, in practice,

the captured images are usually not enough. As in [4], it

would be useful to incorporate modern monocular priors,

such as the estimated monocular normal (e.g., [26]), to com-

pensate for the deficiency of input images, especially for the

scene-level cases.

Densification Strategies. We observe that, due to our re-

fined splatting algorithm, a Gaussian surfel could have a

much larger fully opaque area. Even though this property

benefits the geometry reconstruction overall, it makes the op-

timization and densification harder, which is also reflected in

the affected view synthesis quality. Since the optimization is

stochastic, a Gaussian surfel could have a large fully opaque

area. Besides, the enforced depth-normal consistency loss

effectively squeezes the Gaussian surfel, which makes the

large fully opaque area difficult to reduce. It then blocks the

optimization towards the other Gaussian surfels it occludes.

Even though we periodically reset the geometry value on

the Gaussian surfel to make it less opaque, we find that its

geometry value will still recover fast instead of shrinking its

size.

We find that using the densification strategy proposed by

[23] leads to smaller Gaussian surfels in general without

losing the quality, which alleviates such a problem. However,

a different strategy which may fully solve this problem is

welcome.

Mesh Extraction. We follow [6] to use the TSDF fusion to

extract the mesh. Even though it gives reasonable results, it is

slow as it operates on the CPU and it also cannot handle thin

structures such as the strips on the wheels of the bicycle well.

In contrast, we also find the marching tetrahedra proposed by

[25] works sub-optimally on the object-centric cases. With

the advance of explicit primitives, i.e., Gaussian kernels, it

would be useful to have a mesh extraction method that may

directly convert primitives of different representations.

Figure 3. Comparison of rendering of meshes extracted by our method (at the top), 2DGS trained with mean depth in the regularization (in

the middle), and 2DGS trained with median depth in the regularization (at the bottom) on the DTU dataset. Non-obvious differences are

highlighted in red circles. The reader may wish to zoom into the electronic version in the figures.

Figure 4. Comparison of rendering of meshes extracted by our method (at the top) and 2DGS (at the bottom) on the object cases of the

BMVS dataset.

Figure 5. Comparison of rendering of meshes extracted by our method (at the top) and 2DGS (at the bottom) on the scene cases of BMVS

dataset. Non-obvious differences are highlighted in red circles.

Figure 6. Rendering of meshes extracted by our method on the Tanks&Temples dataset.

Figure 7. Rendering of meshes extracted by our method on the Treehill, Garden, Bicycle and Stump scenes of MipNeRF 360 dataset.

References

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recog-

nition, pages 5470–5479, 2022. 4

[2] Mario Botsch, Alexander Hornung, Matthias Zwicker, and

Leif Kobbelt. High-quality surface splatting on today’s gpus.

In Proceedings of the Second Eurographics / IEEE VGTC

Conference on Point-Based Graphics, page 17–24, Goslar,

DEU, 2005. Eurographics Association. 5

[3] Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie,

Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, and

Guofeng Zhang. Pgsr: Planar-based gaussian splatting for ef-

ficient and high-fidelity surface reconstruction. arXiv preprint

arXiv:2406.06521, 2024. 5

[4] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin

Wang, and Weiwei Xu. High-quality surface reconstruction

using gaussian surfels. In ACM SIGGRAPH 2024 Conference

Papers, pages 1–11, 2024. 2, 5

[5] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned

gaussian splatting for efficient 3d mesh reconstruction and

high-quality mesh rendering. CVPR, 2024. 4

[6] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and

Shenghua Gao. 2d gaussian splatting for geometrically accu-

rate radiance fields. In ACM SIGGRAPH 2024 Conference

Papers, pages 1–11, 2024. 2, 3, 4, 5

[7] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola,

and Henrik Aanæs. Large scale multi-view stereopsis eval-

uation. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 406–413, 2014. 3, 4

[8] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-

iao Long, Wenping Wang, and Yuexin Ma. Gaussianshader:

3d gaussian splatting with shading functions for reflective

surfaces. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5322–5332,

2024. 5

[9] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and

George Drettakis. 3d gaussian splatting for real-time radiance

field rendering. ACM Trans. Graph., 42(4):139–1, 2023. 1, 2,

3, 4

[10] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics, 36(4), 2017.

4

[11] Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and

Wenping Wang. Sparseneus: Fast generalizable neural surface

reconstruction from sparse views. In European Conference

on Computer Vision, pages 210–227. Springer, 2022. 4

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthe-

sis. In ECCV, 2020. 4

[13] Thomas Müller, Alex Evans, Christoph Schied, and Alexander

Keller. Instant neural graphics primitives with a multiresolu-

tion hash encoding. ACM transactions on graphics (TOG),

41(4):1–15, 2022. 4

[14] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and

Markus Gross. Surfels: surface elements as rendering primi-

tives. In Proceedings of the 27th Annual Conference on Com-

puter Graphics and Interactive Techniques, page 335–342,

USA, 2000. ACM Press/Addison-Wesley Publishing Co. 2

[15] Lukas Radl, Michael Steiner, Mathias Parger, Alexander

Weinrauch, Bernhard Kerbl, and Markus Steinberger. Stopthe-

pop: Sorted gaussian splatting for view-consistent real-time

rendering. ACM Transactions on Graphics (TOG), 43(4):

1–17, 2024. 1, 5

[16] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv:2007.08501, 2020. 3

[17] Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan,

Ben Mildenhall, Andreas Geiger, Jon Barron, and Peter Hed-

man. Merf: Memory-efficient radiance fields for real-time

view synthesis in unbounded scenes. ACM Transactions on

Graphics (TOG), 42(4):1–12, 2023. 4

[18] Christian Reiser, Stephan Garbin, Pratul P. Srinivasan, Dor

Verbin, Richard Szeliski, Ben Mildenhall, Jonathan T. Barron,

Peter Hedman, and Andreas Geiger. Binary opacity grids:

Capturing fine geometric detail for mesh-based view synthe-

sis. SIGGRAPH, 2024. 4

[19] Jiaxiang Tang. Torch-ngp: a pytorch implementation of

instant-ngp, 2022. https://github.com/ashawkey/torch-ngp.

3

[20] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,

Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-

tured view-dependent appearance for neural radiance fields.

In 2022 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 5481–5490. IEEE, 2022. 4

[21] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,

Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A

large-scale dataset for generalized multi-view stereo networks.

Computer Vision and Pattern Recognition (CVPR), 2020. 4

[22] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,

Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,

and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-

time view synthesis. In ACM SIGGRAPH 2023 Conference

Proceedings, New York, NY, USA, 2023. Association for

Computing Machinery. 4

[23] Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong Dou.

Absgs: Recovering fine details in 3d gaussian splatting. In

ACM Multimedia 2024, 2024. 5

[24] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and

Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-

ting. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 19447–

19456, 2024. 4, 5

[25] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian

opacity fields: Efficient high-quality compact surface recon-

struction in unbounded scenes. arXiv:2404.10772, 2024. 4,

5

[26] Zheng Zeng, Valentin Deschaintre, Iliyan Georgiev, Yannick

Hold-Geoffroy, Yiwei Hu, Fujun Luan, Ling-Qi Yan, and

Miloš Hašan. Rgb↔x: Image decomposition and synthesis

using material-and lighting-aware diffusion models. In ACM

SIGGRAPH 2024 Conference Papers, pages 1–11, 2024. 5

[27] Baowen Zhang, Chuan Fang, Rakesh Shrestha, Yixun Liang,

Xiaoxiao Long, and Ping Tan. Rade-gs: Rasterizing depth in

gaussian splatting. arXiv preprint arXiv:2406.01467, 2024.

4, 5

[28] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa

volume splatting. In Proceedings Visualization, 2001. VIS

’01., pages 29–538, 2001. 1, 2, 5

	. Derivations
	. Revisit Volume Splatting
	Original Derivation
	Derivation of Refined Splatting Algorithm

	. Parameterize and Render Geometry Field with Gaussian Surfels.

	. Additional Implementation Details
	. Geometry Field Splatting
	. Remedy Loss Landscape Defects
	. Improve Color Representation

	. Additional Evaluation Results
	. Quantitative Evaluation
	. Qualitative Evaluation
	. Ablation Study

	. Additional Discussions

