Geometry Field Splatting with Gaussian Surfels

Supplementary Material

A. Derivations
A.1. Revisit Volume Splatting
A.1.1 Original Derivation

Given a density field o(x) and a color field c(x), where
x € R3, the volume splatting algorithm [28] proposes to
decompose the density field into the weighted sum of a set
of n independent kernels {/C1, Ka, ..., K, }, each of which is
a function mapping from x to a scalar and associated with a
weightw;, e Ry, =1,2,...,n.

Formally, the density field is expressed as:

o(x) = ZwilCi(x). (1)

This decomposition helps simplify the volume rendering
equation, which does not consider the scattering, for efficient
rendering.

Specifically, given a ray shooting from the camera origin
o with direction d, the location of a point p on the ray can
be expressed as p(!) = o + dl, where [ € R, denotes the
depth. The rendered color C with the exponential falloff is
given by the following equation:
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c- / e(p(1))o(p(1)) exp(~ / o(p()dl)dl. ()

To simplify the notation without losing generality, we rewrite
the Eqn. 2 as:

o0

l
C= c(l)a(l)exp(—/ a(l")dl")dl. 3)
0 0

Zwicker et al. [28] propose to choose each of the kernels
which compose the density field to have finite intersection
intervals on the ray and assume that there is no overlapping
between intersection intervals of any two of them. These
kernels can then be sorted based on their intersection interval
along the ray. By plugging the Eqn. I into the Eqn. 3, we get:
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Relying on the assumption that each kernel has finite
intersection interval and there is no overlapping, we can

further rewrite the Eqn. 4 as:
n i—1 0o
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Zwicker et al. [28] then assume the color is constant
within the intersection interval of each individual kernel and
ignores the self-occlusion. Eqn. 5 can then be written as:

cx Y (Tewl- [ wistan)e [ wikioan,

0

(6)
where c; denotes the constant color value within the inter-
section interval of i" kernel.

Zwicker et al. [28] then propose to expand the expo-
nential term using the Taylor series and defines a value
pi = wj fooo Ki(1)dl, which is called the footprint function
with respect to the current ray. We can then reach:
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which corresponds to the Eqn. 2 in the main paper. Notice
that, even though the kernels are used to decompose the
density field, due to the Taylor series expansion, p;,7 =
1,2, ...,n has to be within the range [0, 1]. Also, notice that,
in a more general sense, the footprint function is the integra-
tion of the density along the intersection interval, but it is
assumed that there is only one kernel constituting the density
there, therefore, the footprint function is simplified as the
integration of the kernel values.

Therefore, as long as we can evaluate the footprint func-
tion p easily and even differentiably, we can then reach an
algorithm for efficient volume rendering, and even inverse
rendering [9] under certain approximations.

As a summary, we identify following factors that make
the volume splatting an approximate rendering algorithm:

* Self-occlusion is ignored.

* Transmittance term is approximated through the Taylor
expansion.

It is assumed that there is no overlapping between the
intersection intervals of any two kernels, but in practice,
it is not the case, which leads to the sorting not clearly
defined, as observed in [15].
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A common choice of kernel is to use 3D Gaussian kernel
asin [9, 28]. In [9], the footprint function of 3D Gaussian ker-
nel is further approximated due to the perspective transform,
which introduces additional bias.

A recent emerging interest [4, 6] is to use 2D Gaussian
kernel, which is then known as Gaussian surfel [14]. In this
case, perspective projection is no longer a problem because
the intersection between the 2D Gaussian kernel and the ray
can be efficiently calculated [6]. And the sorting is always
well-defined because the intersection interval along the ray
is in general a point instead of an interval in the case of 3D
Gaussian. However, the footprint function is then undefined
because the integrand is a discontinuous function which has
a finite value at the place where ray intersects with the 2D
Gaussian kernel, and zero otherwise. The workaround pro-
posed in [6] is to simply use the finite value as the footprint
function, which still introduces further bias.

A rigorous exact rendering algorithm with efficient splat-
ting is still an open problem, and we manage to solve it.

A.1.2 Derivation of Refined Splatting Algorithm

To move towards the exact rendering, we first address two

approximations in the aforementioned derivation. We do not

ignore the self-occlusion and do not expand the transmittance

term. This corresponds to the Eqn. 7 in the main paper.
Specifically, from the Eqn. 5, we have:

C= Z Hexp —p5)) / w;IC; (1)
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Notice that:
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Therefore, from Eqn. 8§ we have:

n
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which corresponds to the Eqn. 7 in the main paper. There-
fore, there is no restriction on the value range of p;,7 =
1,2,...,n

A.2.Parameterize and Render Geometry Field with
Gaussian Surfels.

We focus on deriving the Eqn. 15 in the paper here. Recall
that our goal is to evaluate the following equation:

ti+h/ cos0; _ x
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1D
where ¥(-) is the CDF of the standard normal distribution

and ¢(-) = U’(-). Besides, when |t — t;| < h/ cosb;,

ﬂﬂm=ﬂx(
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cost; = |w - n.
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Recall that VF(x(t)) is parallel to n; and we have
n(x(t)) = VF(x(t))/||[VF(x(t))||, which implies that
cosf; = |w - n(x(t))].

Notice that Eqn. (11) is a symmetric integration with
respect to ¢;, therefore,
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Therefore, Eqn. (13) is then:
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where c is a large positive number such that ¥(c) = 1, and
therefore In U(c) = 0.

Notice that we enable the calculation of footprint function

by using the extrusion with width 2h, and it can be seen as
equivalent to the original case without the extrusion, by
letting h — 0.
Discussion about Overlapping. It is less obvious that the
intersections between Gaussian surfels and the ray could
overlap, i.e., the intersection points coincide, but we argue
that it is indeed the case in practice.

First of all, we explicitly utilize the depth distortion loss
to promote the ray to intersect the visible surface exactly
once. Additionally, assume we have a flattened surface in the
space. It then requires certain number of Gaussian surfels
to compose it. Since we explicitly enforce the depth-normal
consistency to smooth the geometry, these Gaussian surfels
could become coplanar and partially overlap with each other
within the accuracy of floating point numbers. Notice that the
partial overlapping here refers to the overlapping of Gaussian
surfels in the 3D space instead of the overlapping of inter-
sections with respect to the ray which we mainly talk about.
Therefore, when a ray falls into the area where Gaussian
surfels overlap, the intersections between Gaussian surfels
and the ray then coincide.

B. Additional Implementation Details

As to the depth distortion loss, the regularization weight is
set to 1000 for the DTU dataset, 10 for the BlendedMVS
dataset, and 0 for the Mip-NeRF 360 dataset.

B.1. Geometry Field Splatting

We base our rasterizer implementation on that of 2DGS [6]
using CUDA. Given a ray, the footprint function for the i"
Gaussian surfel is defined as:

pi=—2I¥(c— f;)

c— f; (16)
= —21In(0.5 + 0.5erf .
( ( 7 )
We choose ¢ = 3, because ¥(3) a 0.999. Therefore,
-——21n(05+05erf(3_f")) (17)
pZ . . \/i 9

We further clamp the maximum of f; to be 4.28 such that
the converted opacity 1 — exp(—p;) ~ 0.99, because as in
the original 3DGS [9] and 2DGS [6] implementations, the
maximum of opacity is clamped to be 0.99. Namely,

3 — min{ f;,4.28}
V2

However, we find that when f; is small, the derivative of p;
is close to zero and propagates almost zero gradients back to

pi = —21n(0.5 + 0.5erf( ). (18)
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Figure 1. Plotting of function values of F'(z) = —2In(0.5 +
0.5erf(*72)) and G(z) = 0.032792%* over the range [0, 4.28].
the parameter due to the numerical error, which hinders the
optimization.

To alleviate the numerical error, we approximate Eqn. (18)
with a polynomial function:

pi &~ 0.03279(min{ f;, 4.28})34, (19)

We plot functions F'(z) = —21n(0.5+ 0.5erf(3;\/237)) and

G(x) = 0.032792%4 in Fig. 1, and it can be seen that these
two functions are close.

B.2. Remedy Loss Landscape Defects

The color propagation per ray is approximated by propagat-
ing color in the R? space. However, propagating the colors
of all Gaussian surfels into the color of every Gaussian surfel
is impractical.

Therefore, we use k-closest-point [16] algorithm based
on the centers of Gaussian surfels to identify 10 closest
Gaussian surfels to each Gaussian surfel every 100 iterations.
The color of every Gaussian surfel is then blended based on
these 10 closest Gaussian surfels which include itself. The
choice of number of closest Gaussian surfels is made by
ensuring the program does not cause out of memory error
with either of our two color representations on a standard
consumer-level graphics card with around 10 GB memory,
on the DTU dataset [7].

B.3. Improve Color Representation

Following the default setting of [19], the shallow MLP is im-
plemented with 2 hidden layers, and the spherical harmonics
encoding of directions has degree 4.

C. Additional Evaluation Results

Evaluation Details. We find that the evaluation of mesh
quality is also dependent on how well the mesh is cleaned



Methods 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | Avg. |
Ours (SH) 038 063 030 035 079 063 065 110 121 062 048 1.18 033 042 038 | 0.63
- Geometry Field Splatting 050 0.67 035 043 094 089 070 1.17 118 0.65 057 1.02 039 061 048 | 0.70
- Remedy Loss Landscape Defects 042 067 035 036 085 069 070 1.19 119 065 049 124 036 046 040 | 0.67
+ Per-Ray Sorting 039 065 031 033 078 049 061 1.14 120 064 046 1.07 029 044 037 | 061
Ours (Latent) 040 059 039 038 072 059 065 108 093 059 050 0.67 034 047 040 | 058
- Geometry Field Splatting 052 079 047 052 091 071 084 117 1.07 063 065 082 042 075 053 | 0.72
- Remedy Loss Landscape Defects 038 056 039 036 080 060 068 1.13 095 064 050 0.65 035 048 040 | 059
+ Per-Ray Sorting 043 064 038 034 073 050 057 1.13 100 065 049 059 030 048 038 | 0.57
- Ray Direction Conditioning 047 061 042 039 081 078 075 1.13 098 060 056 0.67 039 055 044 | 0.64
- Reflected Ray Direction Conditioning | 0.39 0.61 040 0.37 078 0.60 0.62 109 098 061 050 0.80 035 047 039 | 0.60

Table 1. Quantitative evalution on the DTU dataset based on the Chamfer Distance for different ablation models. The best metric is

highlighted in red, the second best metric is highlighted in orange, and the third best metric is highlighted in yellow.

Outdoor Scenes Indoor Scenes
p— p— Methods |PSNR1 SSIM1 LPIPS | |PSNR1 SSIM{ LPIPS |
n’g NeRF 21.46 0.458 0.515 26.84 0.790 0.370
Z ' i INGP 22.90 0.566 0.371 29.15 0.880 0.216
%l - — MERF 23.19 0.616 0.343 27.80 0.855 0.271
CD: 0.026 CD: 0.019 CD: 0.018 BakedSDF 22.47 0.585 0.349 27.06 0.836 0.258
MipNeRF 360 | 24.47 0.691 0.283 31.72 0.917 0.180
) BOG 23.94 0.680 0.263 27.71 0.873 0.227
-_) e = 3DGS 2464 0731 0234 | 3041 0920  0.189
- ‘#" -aﬁ SuGaR | 2293 0629 0356 | 2943 0906 0225
& MipSplatting 24.65 0.729 0.245 30.90 0.921 0.194
D001 PR D 0010 2DGS 2418 0703 0287 | 3006 0909 0213
GOF 24.82 0.750 0.202 30.79 0.924 0.184
Ground Truth 2DGS Ours (SH)  Ours (Latent) RaDe-GS | 2517 0764 0199 | 3074 0928  0.165
Figure 2. Comparisons of normal maps and chamfer distances (de- Ours (SH) 2440 0734 0224 | 2993 0916  0.194
noted as “CD”; lower is better) of reconstructed geometry for highly Ours (Latent) | 23.76 0693 0293 | 2992 0906 0219

specular surfaces (first column) from the ShinyBlender dataset [20].

after extraction. Typically, SDF-based approaches use the
marching cube algorithm to produce closed-surface meshes
which differ from the open-surface ground-truth and then
contain redundant parts. In contrast, splatting-based ap-
proaches typically use the TSDF fusion algorithm to produce
open-surface meshes based on the depth maps, which are
more concise. It then becomes necessary to clean triangles,
which are invisible from all training views, to have a fair uni-
fied evaluation protocol. In practice, we combine the scripts
from [11] and [6] to clean the mesh before evaluation. As to
the Neuralangelo, we find that its extracted mesh sometimes
is enclosed in a sphere, which makes the mesh cleaning
fail. Therefore, we manually remove the enclosing spheres
if they exist for the extracted meshes of Neuralangelo before
passing them into the evaluation.

C.1. Quantitative Evaluation

We evaluate the view synthesis quality of our method on
the Mip-NeRF 360 dataset [1], while comparing with NeRF
[12], INGP [13], MERF [17], BakedSDF [22], MipNeRF
360 [1], BOG [18], 3DGS [9], SuGaR [5], MipSplatting
[24], 2DGS [6], GOF [25], and RaDe-GS [27]. We find
that with geometry clearly defined and its corresponding
regularization, the view synthesis is harmed.

As to the rendering speed during inference, since our
proposed color propagation is irrelevant to the view, it can be
achieved and cached before rendering, thus does not impact

Table 2. Quantitative comparison on the Mip-NeRF 360 dataset
based on the view synthesis.

the rendering speed.

C.2. Qualitative Evaluation

We show complete rendering of all cases on the DTU dataset
[7] and BlendedMVS dataset [21] between our method and
2DGS [6] in Fig. 3, Fig. 4, and Fig. 5. In the 2DGS algo-
rithm, using the median depth in the regularization leads to
better quantitative results, while using the mean depth in
the regularization produces smoother geometry and more
visually pleasing results. In Fig. 3, we compare with 2DGS
trained with both settings. We capture more geometric de-
tails than those trained with mean depth in 2DGS, and are
free of cracks and holes compared to those trained with
median depth in 2DGS. We also show the extracted mesh
on a few scenes of MipNeRF 360 dataset in Fig. 7 using
our method and TSDF fusion. We further provide prelimi-
nary comparison results for two selected cases on the Shiny-
Blender dataset [20] in Fig. 2 to demonstrate the capability
of our method to generalize to highly specular surfaces.

We also test our method on the Tanks&Temples dataset
[10] but this dataset does not provide ground-truth camera pa-
rameters, which requires an iterative-closest-point procedure
to align the extracted mesh and ground-truth mesh. After
manual inspection, we find that the metrics heavily depend
on how well this off-the-shelf alignment algorithm aligns
the extracted mesh and ground-truth mesh, and it actually



fails on two scenes. Therefore, we choose to only show our
qualitative results in Fig. 6.

C.3. Ablation Study

We provide the complete evaluation results on the DTU
dataset for all our ablation models in Tab. 1. Specifically,
we evaluate with our two color representations, i.e., SH
representation and latent representation. As to the latent
representation, we also ablate on the choice of conditioning
for MLP. We conduct all the ablation experiments with the
same hyper-parameters with the baseline.

By comparing the baseline with the ablation model with-
out geometry field splatting, it is clear that the geometry
field splatting instead of the original approximate rendering
formulation in 2DGS significantly boosts the performance.
However, we also find that the geometry field splatting makes
the SH representation more sensitive to the specular surfaces,
which is reflected in the “scan110”. By comparing the base-
line with the ablation model without the remedy to loss land-
scape defects, we can see that our proposed color blending
consistently improves the performance on almost every case,
especially for the SH representation. The ablation model
which implements per-ray sorting achieves better averaged
performance, but does not always achieve the best perfor-
mance on every case. We argue that it may be due to the fact
that the hyper-parameters are tailored for the global sorting
approximation, and not tuned for the per-ray sorting case.
Implementing [15] with our algorithm while tuning relevant
hyper-parameters may further improve our performance.

As to the latent representation, without ray direction con-
ditioning or reflected ray direction conditioning, the recon-
structed geometry suffers.

D. Additional Discussions

In this paper, we focus on evaluating our proposed geometry
field representation and remedy to loss landscape defects,
and therefore do not incorporate many other methods which
could further improve the geometry reconstruction. However,
we identify a few potential ways here which may further
improve the geometry reconstruction with our method.
Anti-aliasing. As discussed in [6], a 2D Gaussian is degen-
erated into a line in the screen space while being observed
from a slanted viewpoint. Besides, as discussed in [28], the
output image has to be band-limited to avoid aliasing. We
follow [6] to only apply an object-space low-pass filter [2],
which actually does not follow our rendering model. Similar
to [24], it would be useful to design an anti-aliasing method
which is tailored for our rendering model.

Appearance Embedding. We assume that the scene is
static and the images are captured in the same lighting con-
dition. However, there could be slight variance of lighting
conditions, and brightness of the images, etc., due to the
capture. Therefore, it would be useful to have an appearance

embedding per image as in [3, 25, 27].

Color Representation. We choose to use a latent represen-
tation for color that is as simple as possible to improve on
the specular cases and emphasize more on our proposed geo-
metric representation. In the future, it will be beneficial to
further extend our method with better latent representations
as in [8] to work on highly specular surfaces.

Multi-view Stereo Constraint. Concurrently, Chen et al.
[3] shows that the multi-view stereo constraint could be
helpful for the geometry reconstruction quality using the
volume splatting representation. It would be useful to apply
the multi-view constraint with our clearly defined geometry,
which may further improve the reconstruction.
Incorporate Monocular Priors. In the dense-views ge-
ometry reconstruction task, the captured images are assumed
to be sufficient to recover the geometry. However, there may
not be clear standard to decide whether the captured images
are sufficient to define a unique solution, and, in practice,
the captured images are usually not enough. As in [4], it
would be useful to incorporate modern monocular priors,
such as the estimated monocular normal (e.g., [26]), to com-
pensate for the deficiency of input images, especially for the
scene-level cases.

Densification Strategies. We observe that, due to our re-
fined splatting algorithm, a Gaussian surfel could have a
much larger fully opaque area. Even though this property
benefits the geometry reconstruction overall, it makes the op-
timization and densification harder, which is also reflected in
the affected view synthesis quality. Since the optimization is
stochastic, a Gaussian surfel could have a large fully opaque
area. Besides, the enforced depth-normal consistency loss
effectively squeezes the Gaussian surfel, which makes the
large fully opaque area difficult to reduce. It then blocks the
optimization towards the other Gaussian surfels it occludes.
Even though we periodically reset the geometry value on
the Gaussian surfel to make it less opaque, we find that its
geometry value will still recover fast instead of shrinking its
size.

We find that using the densification strategy proposed by

[23] leads to smaller Gaussian surfels in general without
losing the quality, which alleviates such a problem. However,
a different strategy which may fully solve this problem is
welcome.
Mesh Extraction. We follow [6] to use the TSDF fusion to
extract the mesh. Even though it gives reasonable results, it is
slow as it operates on the CPU and it also cannot handle thin
structures such as the strips on the wheels of the bicycle well.
In contrast, we also find the marching tetrahedra proposed by
[25] works sub-optimally on the object-centric cases. With
the advance of explicit primitives, i.e., Gaussian kernels, it
would be useful to have a mesh extraction method that may
directly convert primitives of different representations.



Ours

2DGS (ED)

2DGS (MD)

Figure 3. Comparison of rendering of meshes extracted by our method (at the top), 2DGS trained with mean depth in the regularization (in
the middle), and 2DGS trained with median depth in the regularization (at the bottom) on the DTU dataset. Non-obvious differences are
highlighted in red circles. The reader may wish to zoom into the electronic version in the figures.
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Figure 4. Comparison of rendering of meshes extracted by our method (at the top) and 2DGS (at the bottom) on the object cases of the
BMVS dataset.



Ours
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Figure 5. Comparison of rendering of meshes extracted by our method (at the top) and 2DGS (at the bottom) on the scene cases of BMVS
dataset. Non-obvious differences are highlighted in red circles.

Figure 6. Rendering of meshes extracted by our method on the Tanks&Temples dataset.



Figure 7. Rendering of meshes extracted by our method on the Treehill, Garden, Bicycle and Stump scenes of MipNeRF 360 dataset.
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