
Hand-held Object Reconstruction from RGB Video with Dynamic Interaction

Supplementary Material

In Sec. A, we provide more implementation details of
our method and datasets. Section B includes additional vi-
sualizations and comprehensive per-video quantitative re-
sults. Finally, in Sec. C, we further explore the limitations
of our method and discuss potential solutions.

A. Experiment Details
A.1. Pose Initialization Details

For mesh generation, we prompt ChatGPT with ”describe
the object interacting with the hand” and use its response as
input for the text-to-3D model. During the registration of
the 3D model to the image, the generated mesh V is first
normalized to fit within a unit cube. Instead of relying on
real camera intrinsics, we set the camera intrinsics based on
the width Iw and height Ih of the input images as follows:1.2min(Ih, Iw) 0 Iw
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with the intrinsics fixed during initialization. We adopt a
render-and-compare approach to initialize each frame pose
by minimizing:

λprojLproj + λsemLsem, (2)

where λproj and λsem are both set to 1. Specifically, we
sample numerous pose candidates, with rotations uniformly
drawn from SO(3) and translations chosen by minimiz-
ing the difference between the diagonals of the projected
model’s tight bounding box and the object mask bounding
box. We then select the top five poses with the lowest Lsem

values and choose the one closest to the previous frame’s
pose as the starting point for the Eq. (2) optimization (opti-
mization conducted with only the chosen pose for 100 itera-
tions, others will be deprecated). After obtaining the initial
poses for all frames, we refine them to enforce temporal
smoothness across the input sequence for another 200 iter-
ations.

A.2. Shape-Pose Joint Optimization Details

During joint optimization, we apply a coarse-to-fine strat-
egy for pose refinement, following the approach in [9].
Specifically, we weight the positional encoding of a 3D
point x as λ(x) = (x, . . . , wk(ns) · sin(2kπx), wk(ns) ·
cos(2kπx), . . . ), where k ∈ [0, L− 1]. In our paper, we set
L to 6. Here, ns ∈ [0, Ns] denotes the current training step,
and Ns is the total number of training steps. The weight
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Figure 1. Further qualitative comparison with the baseline
COLMAP-BARF for two-handed object reconstruction on
HOPE. Our method (top row) delivers significantly better recon-
struction quality than the baseline (middle row), with results ex-
hibiting fewer artifacts.

function wk is defined as:

wk(ns) =
1

2

[
1− cos(clamp(

2nsL

Ns
− k, 0, 1) · π)

]
. (3)

Starting from ns = 0, the positional encodings are gradu-
ally activated, with the training loss as follows:

L = Lcolor + λeikLeik + λmaskLmask

+ λnormalLnormal + λcorresLcorres,
(4)

where λmask = 0.5, λeik = 0.1, λnormal =
0.1, λcorres = 10 are set empirically. For pose outlier vot-
ing, we use a local window length of 10, set the standard de-
viation to λ = 2, and define the Sampson inconsistency rate
threshold as 0.3. When calculating dSampson, we only con-
sider correspondence points with a confidence wp greater
than 0.5. To avoid suboptimal results from earlier training
stages, we reinitialize the parameters of the corresponding
low-quality poses and SDF weights.

A.3. Dataset Details

In Tab. 1, we list the sequence names from the HO3D [3]
dataset used for reconstruction, with underlined items cor-
responding to those in Hampali et al. [4]. The objects from
the HOPE [12] and HOD [5] datasets used for evaluation
are shown in Tab. 2 and Tab. 3, respectively.

B. Additional Results
B.1. Additional Qualitative Results

Additional qualitative results of two-handed object re-
construction on HOPE. In Fig. 1, we present more re-
construction results on the HOPE dataset. As discussed in
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Figure 2. Comparison with Hampali et al. [4] and HOLD [2] on the same HO3D sequences from two different views. Our method
(top) demonstrates significantly better reconstruction quality compared to Hampali et al. [4] (second row), with more detailed results and
fewer artifacts. For reference, the third row includes reconstruction meshes from HOLD [2], where our method still demonstrates superior
quality.

the main paper, COLMAP-BARF’s results exhibit numer-
ous artifacts, while our method achieves higher fidelity.

Comparison with Hampali et al. [4] and HOLD [2] on
the same HO3D sequences. Since the code for Ham-
pali et al. [4] is unavailable, we follow the approach of
HOLD [2] and use the same reconstruction sequences (un-
derlined sequences in Tab. 1), comparing them with their
released 3D models in point cloud format. As shown in
Fig. 2, our results capture finer details and exhibit fewer ar-
tifacts, consistent with the quantitative results presented in
the main paper. For reference, we also include the recon-
struction results from HOLD on the same sequences, where

our method still demonstrates superior quality.
Generated priors. We visualize the generated priors for
HO3D, HOD, and HOPE in Fig. 3, Fig. 4 and Fig. 5, re-
spectively. Although there are discrepancies in shape and
texture, our proposed semantic consistency allows these pri-
ors to be used for initializing object poses.
Comparison of different generated priors. We compare
the reconstructed meshes and pose trajectories along with
the generated priors from different text-to-3D models: Ge-
nie [11] (our used, Gengenie) and Shap-e [7] (Genshap−e).
As shown in Fig. 2, although Shap-e generates priors of
lower quality compared to Genie, it still reconstructs rea-



Object Seq.

cracker box MC1
cracker box MC6
sugar box ShSu10
sugar box ShSu12

mustard bottle SM2
mustard bottle SM4

meta can GPMF12
meta can GPMF14
banana BB12
banana BB14
pitcher AP10
pitcher AP13

bleach cleanser ABF14
bleach cleanser SB10

mug SMu1
mug SMu40

power drill ND2
power drill MDF14

scissors GSF12
scissors GSF14

Table 1. HO3D sequences for evaluation. The underline se-
quences are the same with Hampali et al. [4].

Object

BBQSauce
Butter

Cherries
Milk

Spaghetti
TomatoSauce

Tuna
Yogurt

Table 2. HOPE sequences for
evaluation.

Object

Rubber Duck
Robot

Cat
AirPods
David

Giuliano
Marseille

Table 3. HOD sequences for
evaluation.

sonable meshes and poses in most cases, demonstrating the
robustness of our system to variations in priors, even when
there are significant discrepancies in geometry or texture
(e.g., Drill, Pitcher, and Cracker box). However, it is worth
noting that in cases where Shap-e’s priors are of particu-
larly low quality (e.g., Scissors), the reconstructed results
may exhibit more artifacts. Higher-quality generated priors
can further enhance our results. Additionally, we include
results from HOLD, where Genshap−e consistently outper-
forms HOLD in most cases, highlighting the effectiveness
of the generated priors.

RPEt(cm)↓ RPEr(◦) ↓ ATE(m)↓

GT 2.019 3.049 0.077
GT w/o Lsem 4.256 6.304 0.202

Gengenie 3.629 4.738 0.115
Gengenie w/o Lsem 6.011 8.652 0.255

Table 4. The effectiveness for Lsem for pose initialization. GT
indicates the use of ground-truth 3D models for pose initialization,
while Gengenie refers to using the generated priors from Genie for
pose initialization. w/o Lsem means aligning the 3D model to the
2D image without Lsem.

Init. Pose initialization Joint optimization with our method
RPEt(cm)↓ RPEr(◦) ↓ RPEt(cm)↓ RPEr(◦) ↓ CD (cm2)↓

Hand 2.844 3.541 1.597 2.724 1.04
COLMAP 3.061 4.429 2.682 3.937 1.80

Ours 2.693 3.531 1.523 2.441 0.53

COLMAP 5.127 7.558 4.67 6.396 2.39
Ours 2.729 3.905 1.938 2.924 0.40

Table 5. Comparison of different pose initialization methods.
“Hand” refers to estimate object motion using hand motions.

B.2. Additional Quantitative Results

The effectiveness of Lsem for pose initialization. Ta-
ble 4 shows the pose initialization results that compared
with variants without Lsem. The results indicate that re-
lying solely on masks to initialize poses using generated
priors results in significant errors, even when ground-truth
meshes are used. Lsem effectively resolves ambiguities and
enhances pose accuracy. This explains the inferior recon-
struction results when omitting Lsem in pose initialization.

Comparison of different pose initialization methods.
In Tab. 5, we evaluate the initial poses and final results ob-
tained with our proposed optimization method using eight
HO3D sequences with different pose initializations. The top
rows correspond to four sequences where the hand firmly
grasps the object, while the bottom rows correspond to four
sequences with freely moving objects. For hand pose as
a proxy, we compare using HOLD’s estimation. It out-
performs COLMAP in most cases, particularly for smaller
objects. However, larger objects often occlude the hand,
making pose estimation more challenging. A key limitation
of using the hand as a proxy is its reliance on a firm grip,
which can degrade reconstruction quality. COLMAP per-
forms well on objects with rich features but can completely
fail on more challenging ones. Meanwhile, our joint opti-
mization consistently improves results across different pose
initialization methods, demonstrating its robustness.

Per-sequence quantitative results. We present per-
sequence quantitative results for all three datasets in Tab. 6
(HO3D), Tab. 7 (HOD), and Tab. 8 (HOPE).



C. Discussions
In this paper, we propose a novel system for reconstruct-
ing hand-held objects during dynamic interactions involv-
ing one or both hands. While the method produces high-
quality meshes, it has certain limitations.

Firstly, the effectiveness of our method depends on the
quality of the generated priors, which may not perform
well with unique objects that current generators struggle
to represent accurately. Recent advancements in 3D gen-
erators [1, 10] have enabled the creation of increasingly
higher-quality priors. In Fig. 7, we present a failure case.
Our method relies on semantic consistency for pose initial-
ization. However, in some instances, DINO may produce
nearly identical features for different sides of an object,
resulting in incorrect pose estimations. Recent progress
in semantic feature extraction [14] may help address this
limitation. To further improve reconstruction quality, our
method can adopt the approach of HOLD [2], which lever-
ages hand-object interaction priors [6], refines poses using
reconstructed meshes, and retrains the network. Addition-
ally, the joint optimization of neural implicit fields is com-
putationally intensive, and adopting alternative representa-
tions [8] may enhance efficiency.
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Figure 3. Generated prior using Genie for HO3D.
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Figure 4. Generated prior using Genie for HOD.
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Figure 5. Generated prior using Genie for HOPE.
Reference image GT Gengenie Genshap-e

SfM fails

SfM fails

HOLD

Figure 6. Comparison of different priors. We present visualizations of the generated priors, reconstructed meshes, and pose
trajectory results from two text-to-3D models: Genie [11] (second column) and Shap-e [7] (third column). Despite producing lower-
quality priors, Shap-e successfully reconstructs reasonable meshes and poses in most cases, highlighting the robustness of our system
to varying priors. Moreover, its results outperform those from HOLD (last column).



Seq. Metric IHOI [13] HOLD [2] Ours

MC1

CD (cm2) ↓ 2.67 0.46 0.79
RPEt(cm) ↓ - 1.946 2.164
RPEr(◦) ↓ - 2.543 2.600
ATE(m)↓ - 0.067 0.060

MC6

CD (cm2) ↓ 3.10 0.26 0.19
RPEt(cm) ↓ - 0.769 0.736
RPEr(◦) ↓ - 1.199 1.165
ATE(m)↓ - 0.019 0.015

ShSu10

CD (cm2) ↓ 0.57 0.42 0.24
RPEt(cm) ↓ - 2.606 2.490
RPEr(◦) ↓ - 4.482 3.251
ATE(m)↓ - 0.206 0.081

ShSu12

CD (cm2) ↓ 1.84 0.17 0.68
RPEt(cm) ↓ - 1.594 1.475
RPEr(◦) ↓ - 3.894 2.663
ATE(m)↓ - 0.251 0.045

SM2

CD (cm2) ↓ 0.32 0.45 0.14
RPEt(cm) ↓ - 5.196 2.204
RPEr(◦) ↓ - 7.947 3.328
ATE(m)↓ - 0.333 0.057

SM4

CD (cm2) ↓ 0.62 0.46 0.58
RPEt(cm) ↓ - 5.271 3.412
RPEr(◦) ↓ - 7.838 4.637
ATE(m)↓ - 0.264 0.092

GPMF12

CD (cm2) ↓ 1.38 0.17 0.17
RPEt(cm) ↓ - 6.511 1.773
RPEr(◦) ↓ - 11.529 2.791
ATE(m)↓ - 0.190 0.033

GPMF14

CD (cm2) ↓ 0.88 0.17 0.05
RPEt(cm) ↓ - 9.285 1.498
RPEr(◦) ↓ - 13.589 1.987
ATE(m)↓ - 0.408 0.030

BB12

CD (cm2) ↓ 4.37 1.94 1.66
RPEt(cm) ↓ - - 2.024
RPEr(◦) ↓ - - 3.612
ATE(m)↓ - - 0.047

BB14

CD (cm2) ↓ 1.33 2.11 0.48
RPEt(cm) ↓ - - 3.34
RPEr(◦) ↓ - - 4.767
ATE(m)↓ - - 0.201

(a) Per-sequence comparison on the HO3D dataset. (Part 1)

Seq. Metric IHOI [13] HOLD [2] Ours

AP10

CD (cm2) ↓ 6.47 1.79 0.76
RPEt(cm) ↓ - 1.859 1.319
RPEr(◦) ↓ - 2.011 1.716
ATE(m)↓ - 0.155 0.090

AP13

CD (cm2) ↓ 5.38 2.72 0.32
RPEt(cm) ↓ - 4.163 1.214
RPEr(◦) ↓ - 5.650 1.504
ATE(m)↓ - 0.364 0.117

ABF14

CD (cm2) ↓ 0.84 0.69 0.54
RPEt(cm) ↓ - 4.725 3.564
RPEr(◦) ↓ - 6.874 5.543
ATE(m)↓ - 0.435 0.158

SB10

CD (cm2) ↓ 0.71 4.58 0.39
RPEt(cm) ↓ - 4.719 3.093
RPEr(◦) ↓ - 5.764 3.567
ATE(m)↓ - 0.368 0.129

SMu1

CD (cm2) ↓ 5.58 1.45 1.54
RPEt(cm) ↓ - 2.741 2.102
RPEr(◦) ↓ - 4.445 3.619
ATE(m)↓ - 0.205 0.075

SMu40

CD (cm2) ↓ 0.67 1.16 0.37
RPEt(cm) ↓ - 6.501 3.009
RPEr(◦) ↓ - 9.868 3.576
ATE(m)↓ - 0.379 0.082

ND2

CD (cm2) ↓ 0.71 3.23 0.24
RPEt(cm) ↓ - 2.166 1.053
RPEr(◦) ↓ - 3.086 1.652
ATE(m)↓ - 0.248 0.017

MDF14

CD (cm2) ↓ 3.38 0.43 0.41
RPEt(cm) ↓ - 6.245 1.499
RPEr(◦) ↓ - 4.870 2.003
ATE(m)↓ - 0.354 0.038

GSF12

CD (cm2) ↓ 28.28 6.73 0.23
RPEt(cm) ↓ - - 1.150
RPEr(◦) ↓ - - 1.908
ATE(m)↓ - - 0.024

GSF14

CD (cm2) ↓ 26.42 6.99 0.47
RPEt(cm) ↓ - - 2.463
RPEr(◦) ↓ - - 3.342
ATE(m)↓ - - 0.058

Mean

CD (cm2) ↓ 4.78 1.82 0.51
RPEt(cm) ↓ - 4.143 2.129
RPEr(◦) ↓ - 5.974 2.962
ATE(m)↓ - 0.265 0.072

(b) Per-sequence comparison on the HO3D dataset. (Part 2)

Table 6. Per-sequence comparison on the HO3D dataset.



Seq. IHOI [13] HOLD [2] Ours

Rubber Duck 7.25 2.70 0.34
Robot 3.89 0.89 0.29

Cat 7.50 1.51 0.18
AirPods 6.06 1.46 1.39
David 5.81 0.52 0.21

Giuliano 9.32 0.39 0.36
Marseille 11.11 1.43 0.34

Mean 7.28 1.27 0.44

Table 7. Per-sequence comparison on the HOD dataset. The
metric is the Chamfer Distance in unit size, where the lower value
indicates the higher reconstruction quality.

Seq. COLMAP-BARF Ours

BBQSauce 0.37 0.12
Buter 1.50 0.07

Cherries 0.94 0.15
Milk 1.61 0.25

Spaghetti 0.82 0.22
TomatoSauce 0.21 0.14

Tuna 1.76 1.30
Yogurt 0.51 0.12

Mean 0.96 0.29

Table 8. Per-sequence comparison on the HOPE dataset.
The metric is the Chamfer Distance in cm2, where the lower
value indicates the higher reconstruction quality.
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Figure 7. Ambiguous features. DINO generates nearly the same features for different object sides, causing incorrect poses.
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