1. Data
1.1. Capture

For real-world data, the aerial view images are captured by
an M350RTK DIJI drone equipped with five SHARE 304S
cameras, as shown in Fig. 2(a). The resolution of these im-
ages is 9552 x 6368, and each camera has a sensor size of
36 mm.

Street view images are captured by a custom designed
helmet equipped with six DJI Osmo Action4 cameras, fol-
lowing Hierarchical-3DGS [4], as visualized in Fig. 2(b).
The resolution of these images is 3840 x 2160. We use a DJI
Osmo Action GPS Bluetooth remote to connect and operate
all six cameras simultaneously. During the data collection
process, we wear the helmet and walk to ensure image sta-
bility. The cameras are set to auto exposure, auto white bal-
ance, and timelapse mode with a 1-second interval. Each
camera has a sensor size of 19.5 mm.

Following the setting of Gaussian Splatting [3], we re-
size the the longest side original images to 1600 pixels.

(b) Helme

Figure 1. (a) M350RTK DIJI drone for aerial images. (b) Heimet
with six DJI Osmo Action4 cameras for street images

(a) Drone

For the synthetic data in our dataset, we maintain the
alignment of the cameras’ roll, pitch, and yaw angles with
those of the real-world scenes to ensure the uniformity of
all data, as shown in Tab. 1.

Rot Aerial Street

Roll Pitch Yaw | Roll Pitch Yaw
1 0 -45 0 0 0 0
2 0 -45 90 0 25 0
3 0 -45 180 0 0 75
4 0 -45 270 0 0 145
5 0 -90 0 0 0 -145
6 0 0 =75

Table 1. Camera rotation parameters in synthetic scenes.

1.2. Discussion

In practical captures, camera density and coverage imbal-
ance can vary significantly due to equipment differences.

Our aerial-to-street dataset is a specific example; the in-
sights and methodology can also apply to a broader range
of multiscale, multi-source datasets.

2. More implementation

2.1. Global Appearance Embedding

In large-scale scenes, the data is typically captured in dif-
ferent environments, leading to inconsistent exposures. In-
spired by Octree-GS [7] and Hierarchical-3DGS [4], we
employ classical generative Latent Optimization (GLO) [1]
to optimize individual appearance embedding vectors for
each training image. To ensure consistent appearance codes
across different chunks, we initially train the Gaussian
primitives without densification for a few iterations, as the
appearance codes mainly capture global and low-frequency
attributes of the scene.

Scene Aerial Street
Method‘Metrics PSNRT SSIMT LPIPS)|PSNR1 SSIM1 LPIPS|

Baseline [6] 20.18 0.539 0.549 | 21.22 0.626 0.394
Single Domain | 22.42 0.666 0.402 | 21.85 0.653 0.362
Finetune 21.36  0.606 0.473 | 21.72 0.648 0.367
Ours 23.23 0.729 0.322 | 22.04 0.669 0.325

Table 2. Quantitative comparison using naive finetuning solutions.

2.2. Mesh Extraction

For mesh extraction, we adopt the 2D-GS[2] approach, ren-
dering depth maps and fusing them into a TSDF volume,
with the maximum depth range calculated based only on
aerial views due to their wider coverage. The marching
cube resolution is 1024.

3. More Experiments
3.1. Gradients Conflict

We visualize the maximum gradient norm of Scaffold-
GS [6] for aerial-only, street-only, and combined training
(calculated for each subset of data below). Separate train-
ing results in a higher gradient norm, particularly during
the densification stage in early training. This observation
across datasets highlights inherent gradient conflicts in the
cross-domain setting, resulting in degraded performance.
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Figure 2. The maximum gradient norm of Scaffold-GS across
aerial only, street only, and merged views on the Road scene.
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Method|Metrics[PSNR SSIM1 LPIPS ||[PSNRT SSIM{ LPIPS | [PSNR1 SSIM1 LPIPS|[PSNR SSIM{ LPIPS |[PSNR{ SSIM{ LPIPS | [PSNR1 SSIM1 LPIPS |

0.382 | 25.76 0.905 0.143 | 26.49 0.842 0.350 | 24.21 0.773 0.297
0.163 | 26.25 0.899 0.141 | 33.56 0.952 0.133 | 26.12 0.837 0.211

2D-GS [2] 2527 0.739 0.391 | 21.75 0.708 0.439 | 22.50 0.752
Our-2D-GS 3221 0931 0.113 | 23.94 0.808 0.297 | 25.40 0.891
3D-GS [3] 26.79 0.784 0.351 | 21.79 0.723 0.422 | 22.25 0.754

Scaffold-GS [6] | 30.03 0.890 0.187 | 23.98 0.796 0.334 | 25.14 0.854
Hier-GS [4] 29.15 0.871 0.206 | 24.51 0.810 0.298 | 23.67 0.805
Ours 33.95 0.946 0.092 | 24.28 0.827 0.264 | 25.85 0.900

0.380 | 25.30 0.910 0.132 | 27.49 0.857 0.333 | 24.87 0.795 0.276
0.226 | 25.33 0.867 0.187 | 31.21 0.928 0.175 | 26.10 0.835 0.219
0.314 | 25.74 0915 0.129 | 31.67 0.922 0.211 | 26.50 0.858 0.160
0.139 | 26.11 0.904 0.133 | 34.99 0.967 0.071 | 26.67 0.855 0.173

Table 3. Quantitative comparison on each synthetic scene of our proposed dataset.

3.2. Naive Solutions

Based on the observations discussed in Section ??, a naive
solution is to merge the results from training on individual
domains. To eliminate artifacts at the seams and maintain
consistency in the feature space, we conduct an experiment
where we concatenate the results from training on a single
domain and fine-tuned the model for an additional 10k it-
erations on the Road and Park scenes. As shown in Tab. 2,
this fine-tuning approach inefficient, time-consuming, and
fails to address the core issue.

3.3. More Results

We report quantitative results for each scene of our pro-
posed dataset, as discussed in the main text: synthetic
scenes (City, Colosseum, and Elevenruin) and real scenes
(Road, Park). These results cover image quality metrics
such as PSNR, SSIM [8], and LPIPS [9], as shown in Ta-
bles 3, 4, 5.

Additionally, we compare our approach with UC-
GS [10] and Hier-GS [4] equipped with camera selection
strategies (R=1), both of which serve as strong baselines.
Despite their advanced configurations, our approach con-
sistently outperforms these methods, particularly in texture-
less and high-frequency regions, as demonstrated in Fig. 3.

‘ Park
Scene ‘

Aerial ‘ Street

Method |Metrics |PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS|

2D-GS [2] 19.76  0.524 0.586 | 21.80 0.664 0.376
Our-2D-GS 2335 0.729 0.330 | 22.46 0.681 0.339
3D-GS [3] 2023 0.545 0.565 | 22.64 0.681 0.361
Scaftold-GS [6] 19.99 0.545 0.565 | 22.35 0.672 0.366
UC-GS [10] 20.62 0.586 0.511 | 2291 0.688 0.341
Hier-GS [4] 21.63 0.657 0427 | 23.75 0.720 0.294
Hier-GS + cam bal.| 21.97 0.672 0.403 | 22.73 0.685 0.346
Ours 23.85 0.776 0.287 | 23.14 0.701 0.308

Table 5. Quantitative comparison on Park scene.

Figure 3. Qualitative comparisons of Horizon-GS against UC-
GS [10] and Hier-GS [4] with Camera Balance strategy.

3.4. Ablation
‘ Road We select Scaffold-GS [6] as our baseline and perform
Scene ‘ Aerial ‘ Street two additional ablation studies focusing on the fine stage
and global appearance embedding, respectively. For quan-
Method|Merics [PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS| titative results, we use the Road and Park scenes, while
2D-GS [2] 19.63 0.484 0.584 | 19.37 0.541 0.468 Block_A is used for qualitative analysis.
Our-2D-GS 21.79 0.645 0.384 | 20.57 0.628 0.349
3D-GS [3] 19.95 0.509 0.562 | 20.17 0.573 0.435 Scene Aerial Street
Scaffold-GS [6] 20.36 0.532  0.532 | 20.08 0.580 0.422 Method‘Metrics PSNR?T SSIMfT LPIPS| |PSNRT SSIM{ LPIPS,
UC-GS [10] 21.00 0581 0468 | 2059 0.610 0378 Baseline [6] 20.18 0539 0549 | 2122 0.626 0394
Hier-GS [4] 2122 0.620 0.432 | 21.30 0.651 0.312 Ours w/o fine stage | 23.32  0.725 0326 | 21.69 0.658 0.338
Hier-GS + cam bal.| 21.45 0.635 0.413 | 20.84 0.631 0346 Ourswiodepth | 2321 0728 0322 | 2217 0.670 0326
Ours 22.60 0.682 0.356 | 20.94 0.637 0.341 Ours 2323 0.729 0321 | 22.04 0669 0.324

Table 4. Quantitative comparison on Road scene.

Table 6. Ablations on our proposed real-world scenes.



Fine Stage. The second stage is used for complementing
the details of aerial views. The rendering quality will de-
crease hugely if discarding it, as shown in Tab. 6.

Depth Supervision. Depth supervision is an optional
scene-dependent parameter applied equally across all base-
lines. Although depth supervision does not directly improve
per-view metrics, it notably enhances weakly textured re-
gions, such as road surfaces.

4. Limitation and More Discussion

In this paper, we analyze the challenges of unified large-
scale scene reconstruction from both aerial and street views,
and propose a systematic solution that delivers high-quality
benchmarks and results. The modules in our system are
not mere incremental improvements, but essential compo-
nents of a cohesive framework designed for robust aerial-
to-street view reconstruction in practical, city-scale appli-
cations. While our method proves effective in reconstruc-
tion and producing high-quality results, it also has certain
limitations. First, similar to most Gaussian-based meth-
ods, Horizon-GS may reach suboptimal solutions when
there is insufficient input information. In future work, we
plan to leverage advanced foundation models to guide the
optimization process more effectively. Additionally, the
divide-and-conquer approach inevitably introduces redun-
dancy due to the required overlaps for seamless merging be-
tween chunks. Implementing more systematic approaches,
such as Grendel-GS [11] or RetinaGS [5], also presents a
promising solution.
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