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1. Loss Computation Algorithm

Algorithm 1 A complete loss computation step for the IbGen
generator during fine-tuning

Input: class name ¢, semantic description p., text features
of classnames { fc,, .., feio00 }» generator eg, CLIP model
C, discriminator Dy, Q-ALIGN model Q, noise &, scaler
AL

im = Generatelmage(eg, &, ¢)

fte = RandomlySelect({fe,,-- - fergo0 })

fim, fp. = GetFeatures(C,im, p,)

Len, Lyeg = ComputeEntireLoss(Dy, fim, fie)

L;n, = ComputelndividualLoss( fi, fp.)

ﬁbi = Een + E’L’I’L

L4, = ComputeQualityLoss(Q, im)

L= Ly + ML,

Output: Training loss for IbGen generator L.
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2. Scoring Quality

Q-ALIGN [21] can be recognized as a special version of
the multimodal large language model (MLLM). Given an
image and system prompt, Q-ALIGN can generate a set
of tokens including a <LEVEL> token which represents
a probability distribution (denoted as X’) over all possi-
ble tokens. This distribution is then post-processed to
derive a score. In the post-processing phase, a closed-
set softmax operation is conducted on the set {I;|?_;} =
{bad, poor, fair, good, excellent} to obtain the probabilities
pi, for each level, such that the sum of p;, for all [; equals 1:

equ,
D= =% (D
Z?:l e
As each text level{bad, poor, fair, good, excellent} corre-
sponds to a score{/, 2, 3, 4, 5}(higher means better quality),
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the final predicted score of Q-ALIGN can be formulated as:

Xy,
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where S, is ranging from one to five.
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3. Training Details

In our fine-tuning method, we inject LoRA layers into the
UNet of the diffusion model and train the discriminator from
scratch. We keep all other components frozen during train-
ing. When training visual backbones, we follow the training
recipe in ConvNeXt [13]. It is worth noting that we train
Vit-S 40 epochs more than ResNet50 because Transformers
often need more time to converge. We provide the detailed
training hyperparameters in Table. 4 and Table. 1.

What’s more, when applying the backbones to down-
stream tasks, we use the toolbox provided in trex [18] to train
the linear classifiers for transfer learning. We use MMDe-
tection [3] and MMSegmentation [5] toolboxes to train the
detection heads and segmentation heads for visual perception
tasks, respectively. In the few-shot [20] setup, we keep the
number of training epochs consistent rather than the number
of iterations.

4. Data Synthesis Details

We use SD1.5 [17] across all benchmarks. Besides, text
prompt “classnames" and hyperparameters showd in Ta-
ble 3 are used to synthesize ImageNet-like datasets (IN-1k,
IN-100).

Model Sampling steps
SD1.5 50

Scheduler  Guidance scale Image size
PNDM [12] 2.0 512 x 512

Table 3. Hyperparameters used when synthesizing data.

5. Datasets Details

Except for ImageNet, We also compare with other two syn-
thetic ImageNet datasets [1, 24] because they are the only



Table 1. Training hyperparameters of visual backbones.

Name ResNet50 ViT-S ResNet50(ablation)
Learning rate le-3 le-3 le-3
Learning rate scheduler Cosine decay Cosine decay Cosine decay
Epochs 120 160 120
LR warmup epochs 12 16 12
Total batch size 2048 2048 512
Optimizer AdamW AdamW AdamW
AdamW - 34 0.9 0.9 0.9
AdamW - [, 0.999 0.999 0.999
RandAugment 9,0.5) 9,0.5) 9,0.5)
Mixup 0.8 0.8 0.8
CutMix 1.0 1.0 1.0
Random erasing 0.25 0.25 0.25
Label smoothing 0.1 0.1 0.1
Stochastic depth 0.1/0.4/0.5/0.5 0.1/0.4/0.5/0.5 0.1/0.4/0.5/0.5
Layer scale le-6 le-6 le-6
Head init scale None None None
Gradient clip None None None
Exp. Mov. Avg. (EMA) 0.9999 0.9999 0.9999
Dataset 4 Classes # Train # Val # Test V'c}l Te.st
samples samples samples provided provided
ImageNet validation sets (training classes)
ImageNet-Val (IN-val) [6] 1000 - - 50000 - v
ImageNet100-Val (IN100-val) [19] 100 - - 5000 - v
Transfer learning(novel classes)
Aircraft [14] 100 3334 3333 3333 v v
Cars196 [10] 196 5700 2444 8041 - v
DTD [4] 47 1880 1880 1880 v v
EuroSAT [8] 10 13500 5400 8100 - -
Flowers [15] 102 1020 1020 6149 v v
Pets [16] 37 2570 1110 3669 - v
Food101 [2] 101 68175 7575 25250 - v
Sun397 [22] 397 15880 3970 19850 - v
Specific bias (original training classes)
Cue Conflict [7] 16 - - 1280 - v
FOCUS [9] 226 - - 23902 - v
Mixed-Rand & Mixed-Same [23] 9 - - 8100 - v
Visual perception
COCO [11] 80 118287 5000 40670 v v
ADE20K [25] 150 20210 2000 3000 v v

Table 2. Datasets we use for evaluating the models.



Name SD1.5
Dataset Generator

Learning rate 2e-5
Learning rate scheduler Constant
LR warmup steps 0
Optimizer AdamW
AdamW - 3y 0.9
AdamW - 35 0.999
Gradient clipping 0.1
Discriminator

Learning rate le-5
Learning rate scheduler Constant
Optimizer AdamW
AdamW - 34 0
AdamW - 35 0.999
Gradient clipping 1.0
Quality assurance loss weight A, 0.1
Gradient enable steps )
LoRA rank 128
Classifier-free guidance scale 2
Resolution 512 x 512
Total training epochs 3
Local batch size 4
Mixed Precision FP16

Table 4. 1bGen training hyperparameters for SD1.5.

Figure 1. Visualization of generated images prompted by polysemy
class name in our dataset.

open source datasets based on SD1.5. Thus, we can get fairer

and more convincing results based on one implementation.

In addition, all datasets used in our metrics to benchmark
the bias of the datasets and test the generalization capacities
of the backbones are listed in the Table 2.

6. Computing Resources

It takes about 1 hour to fine-tune the generator and 52 hours
to generate the ImageNet-like dataset (~1.3M images) with

8 A100-80G GPUs. The generation runtime of each image
is comparable to existing diffusion models.

7. Limitation

While our IbGen demonstrates a great potential to obtain
low-biased annotated dataset like ImageNet, the polysemy
of some text descriptions may bring drawbacks. As shown
in Figure 1, some divergences occur when the class name
refers to several objects . For instance, the text “crane”
can denote either a bird or a machine, and when prompted
with “crane" to generate a class in our dataset, two en-
tirely different objects will appear. We consider that these
divergences are caused by the multiple directions of clip
text space due to the polysemy of human words and may
compromise the knowledge of classification models trained
on our dataset. Although we believe this issue can be solved
with more specific text descriptions instead of class names,
how to introduce more specific text descriptions without
additional bias other than object is still unclear. We will
explore it in our future works.

What’s more, our method attempts employing the low-
biased text information (e.g., object category name) to regu-
larize and fine-tune the diffusion model in the CLIP feature
space for low-biased image generation. Although the dif-
fusion model is only fine-tuned on the 1K categories in
ImageNet, our generated dataset shows less bias (i.e., bet-
ter generalization capacity in downstream tasks) than other
competitors. However, on one hand, since the fine-grained
categories in ImageNet are scarce, the generalization per-
formance of our method in fine-grained object recognition
tasks is still limited. On the other hand, compared with the
infinite categories of objects in real world, the number of
categories employed for fine-tuning remains limited. This
also restrict the generalization capacity of our method, i.e.,
produces bias. Fortunately, our method provides a general
low-biased dataset generation framework, which can miti-
gate both limitations mentioned above by simply introducing
more object categories for fine-tuning.
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